7,795 research outputs found

    Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses

    Full text link
    Recent decades have seen the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of possible contending atomic- and larger-scale configurations and the intricate correlations between their constituents. For a detailed understanding, there is a need for tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method by invoking ideas from network analysis and information theory. Our method efficiently identifies basic unit cells and topological defects in systems with low disorder and may analyze general amorphous structures to identify candidate natural structures where a clear definition of order is lacking. This general unbiased detection of physical structure does not require a guess as to which of the system properties should be deemed as important and may constitute a natural point of departure for further analysis. The method applies to both static and dynamic systems.Comment: (23 pages, 9 figures

    Neutrino Emissivity of Dense Stars

    Get PDF
    The neutrino emissivity of compact stars is investigated in this work. We consider stars consisting of nuclear as well as quark matter for this purpose. Different models are used to calculate the composition of nuclear and quark matter and the neutrino emissivity. Depending on the model under consideration, the neutrino emissivity of nuclear as well as quark matter varies over a wide range. We find that for nuclear matter, the direct URCA processes are allowed for most of the relativistic models without and with strange baryons, whereas for the nonrelativistic models this shows a strong dependence on the type of nuclear interaction employed. When the direct URCA processes are allowed, the neutrino emissivity of hadronic matter is larger than that of the quark matter by several orders of magnitude. We also find that the neutrino emissivity departs from T6T^6 behavior when the temperature is larger than the difference in the Fermi momenta of the particles, participating in the neutrino-producing reactions.Comment: Latex file. 5 figures available on request. accepted in Int. J. Mod. Phys.

    Characterization of Jets in Relativistic Heavy Ion Collisions

    Full text link
    Jet quenching is considered to be one of the signatures of the formation of quark gluon plasma. In order to investigate the jet quenching, it is necessary to detect jets produced in relativistic heavy ion collisions, determine their properties and compare those with the jets one obtains in hadron-hadron or e+−e−e^+-e^- collisions. In this work, we propose that calculation of flow parameters may be used to detect and characterize jets in relativistic heavy ion collisions.Comment: 18 pages, 4 figures, more discussions are added, to be published in Phys. Rev.

    Azimuthal correlations of D-mesons in pp+pp and pp+Pb collisions at LHC energies

    Full text link
    We study the correlations of D mesons produced in pp+pp and pp+Pb collisions. These are found to be sensitive to the effects of the cold nuclear medium and the transverse momentum (pTp_T) regions we are looking into. In order to put this on a quantitative footing, as a first step we analyse the azimuthal correlations of D meson-charged hadron(Dh), and then predict the same for D meson -anti D meson (DD‾D\overline{D}) pairs in pp+pp and pp+Pb collisions with strong coupling at leading order O\cal{O}(αs2\alpha_{s}^{2}) and next to leading order O\cal{O}(αs3\alpha_{s}^{3}) which includes space-time evolution (in both systems), as well cold nuclear matter effects (in pp+Pb). This also sets the stage and baseline for the identification and study of medium modification of azimuthal correlations in relativistic collision of heavy nuclei at the Large Hadron Collider.Comment: 12 pages, 4 figure
    • …
    corecore