7,148 research outputs found
Multi-kilowatt single-mode ytterbium-doped large-core fiber laser
We have demonstrated a highly efficient cladding-pumped ytterbium-doped fiber laser, generating >2.1 kW of continuous-wave output power at 1.1 µm with 74% slope efficiency with respect to launched pump power. The beam quality factor (M2) was better than 1.2. The maximum output power was only limited by available pump power, showing no evidence of roll-over even at the highest output power. We present data on how the beam quality depends on the fiber parameter, based on our current and past fiber laser developments. We also discuss the ultimate power-capability of our fiber in terms of thermal management, Raman nonlinear scattering, and material damage, and estimate it to 10 k
Numerical simulations of miscible channel flow with chemical reactions
We study the pressure-driven miscible displacement of one fluid by another in a horizontal channel in the presence of an exothermic chemical reaction. We solve the continuity, Navier-Stokes, and energy conservation equations coupled to convective-discussion equations of the reactant and product. The viscosity is assumed to depend on the volume fraction of the reactant and product as well as the temperature. The effects of relevant parameters such as the Reynolds number, Schmidt number, Damköhler number and viscosity ratio of the reactant and product are studied. Our results indicate that increasing the intensity of the chemical reaction by increasing the Damköhler number and decreasing the dimensionless activation energy increases the displacement rate. We have also found that increasing Reynolds number leads to more pronounced instabilities and roll-up phenomena, which in turn promote rapid displacement of the resident fluid inside the channel. Variation of the relative significance of the heat of reaction and the Schmidt numbers of the reactants and products, however, has a negligible influence on the displacement rates for the parameter ranges considered in the present work
Electromagnetic effects of neutrinos in an electron gas
We study the electromagnetic properties of a system that consists of an
electron background and a neutrino gas that may be moving or at rest, as a
whole, relative to the background. The photon self-energy for this system is
characterized by the usual transverse and longitudinal polarization functions,
and two additional ones which are the focus of our calculations, that give rise
to birefringence and anisotropic effects in the photon dispersion relations.
Expressions for them are obtained, which depend on the neutrino number
densities and involve momentum integrals over the electron distribution
functions, and are valid for any value of the photon momentum and general
conditions of the electron gas. Those expressions are evaluated explicitly for
several special cases and approximations which are generally useful in
astrophysical and cosmological settings. Besides studying the photon dispersion
relations, we consider the macroscopic electrodynamic equations for this
system, which involve the standard dielectric and permeability constants plus
two additional ones related to the photon self-energy functions. As an
illustration, the equations are used to discuss the evolution of a magnetic
field perturbation in such a medium. This particular phenomena has also been
considered in a recent work by Semikoz and Sokoloff as a mechanism for the
generation of large-scale magnetic fields in the Early Universe as a
consequence of the neutrino-plasma interactions, and allows us to establish
contact with a specific application in a well defined context, with a broader
scope and from a very different point of view.Comment: Revtex 20 page
Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzburgites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0·5121 (close to the host minette values) to 0·5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0·5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf) as in the host minettes, and their Sr–Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere
Effect of 475 °C embrittlement on the mechanical properties of duplex stainless steel
The binary iron–chromium alloy embrittles in the temperature range of 280–500 °C limiting its applications to temperatures below 280 °C. The embrittlement is caused by the decomposition of the alloy to chromium-rich phase, α′ and iron-rich phase, α. This phenomenon is termed 475 °C embrittlement as the rate of embrittlement is highest at 475 °C. Primarily the investigations on 475 °C embrittlement were confined to binary iron–chromium alloys and ferritic stainless steels. Duplex stainless steel grades contain varying proportions of ferrite and austenite in the microstructure and the ferritic phase is highly alloyed. Moreover, this grade of steel has several variants depending on the alloy composition and processing route. This modifies the precipitation behaviour and the resulting change in mechanical properties in duplex stainless steels when embrittled at 475 °C as compared to binary iron chromium systems. The precipitation behaviour of duplex stainless steel at 475 °C and the effect on tensile, fracture and fatigue behaviour are reviewed in this article
Dipole binding in a cosmic string background due to quantum anomalies
We propose quantum dynamics for the dipole moving in cosmic string background
and show that the classical scale symmetry of a particle moving in cosmic
string background is still restored even in the presence of dipole moment of
the particle. However, we show that the classical scale symmetry is broken due
to inequivalent quantization of the the non-relativistic system. The
consequence of this quantum anomaly is the formation of bound state in the
interval \xi\in(-1,1). The inequivalent quantization is characterized by a
1-parameter family of self-adjoint extension parameter \Sigma. We show that
within the interval \xi\in(-1,1), cosmic string with zero radius can bind the
dipole and the dipole does not fall into the singularity.Comment: Accepted for publication in Phys. Rev.
Bearing Capacity of Sulphuric Acid Content Soil
Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity's ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4
- …