4 research outputs found

    Ab-initio investigation of finite size effects in rutile titania nanoparticles with semilocal and nonlocal density functionals

    Full text link
    In this work, we employ hybrid and generalized gradient approximation (GGA) level density functional theory (DFT) calculations to investigate the convergence of surface properties and band structure of rutile titania (TiO2_2) nanoparticles with particle size. The surface energies and band structures are calculated for cuboidal particles with minimum dimension ranging from 3.7 \r{A} (24 atoms) to 10.3 \r{A} (384 atoms) using a highly-parallel real-space DFT code to enable hybrid level DFT calculations of larger nanoparticles than are typically practical. We deconvolute the geometric and electronic finite size effects in surface energy, and evaluate the influence of defects on band structure and density of states (DOS). The electronic finite size effects in surface energy vanish when the minimum length scale of the nanoparticles becomes greater than 10 \r{A}. We show that this length scale is consistent with a computationally efficient numerical analysis of the characteristic length scale of electronic interactions. The surface energy of nanoparticles having minimum dimension beyond this characteristic length can be approximated using slab calculations that account for the geometric defects. In contrast, the finite size effects on the band structure is highly dependent on the shape and size of these particles. The DOS for cuboidal particles and more realistic particles constructed using the Wulff algorithm reveal that defect states within the bandgap play a key role in determining the band structure of nanoparticles and the bandgap does not converge to the bulk limit for the particle sizes investigated

    The phase stability of large-size nanoparticle alloy catalysts at ab initio quality using a nearsighted force-training approach

    Full text link
    CoPt nanoparticle catalysts are integral to commercial fuel cells. Such systems are prohibitive to fully characterize with electronic structure calculations. Machine-learned potentials offer a scalable solution; however, such potentials are only reliable if representative training data can be employed, which typically requires large electronic structure calculations. Here, we use the nearsighted-force training approach to make high-fidelity machine-learned predictions on large nanoparticles with >>5,000 atoms using only systematically generated small structures ranging from 38-168 atoms. The resulting ensemble model shows good accuracy and transferability in describing relative energetics for CoPt nanoparticles with various shapes, sizes and Co compositions. It is found that the fcc(100) surface is more likely to form a L10_0 ordered structure than the fcc(111) surface. The energy convex hull of the icosahedron shows the most stable particles have Pt-rich skins and Co-rich underlayers. Although the truncated octahedron is the most stable shape across all sizes of Pt nanoparticles, a crossover to icosahedron exists due to a large downshift of surface energy for CoPt nanoparticle alloys. The downshift can be attributed to strain release on the icosahedron surface due to Co alloying. We introduced a simple empirical model to describe the role of Co alloying in the crossover for CoPt nanoparticles. With Monte-Carlo simulations we additionally searched for the most stable atomic arrangement for a truncated octahedron with equal Pt and Co compositions, and also we studied its order-disorder phase transition. We validated the most stable configurations with a new highly scalable density functional theory code called SPARC. Lastly, the order-disorder phase transition for a CoPt nanoparticle exhibits a lower transition temperature and a smoother transition, compared to the bulk CoPt alloy.Comment: 26 pages, 8 figure

    Self-consistent convolutional density functional approximations: Application to adsorption at metal surfaces

    Full text link
    The exchange-correlation (XC) functional in density functional theory is used to approximate multi-electron interactions. A plethora of different functionals is available, but nearly all are based on the hierarchy of inputs commonly referred to as "Jacob's ladder." This paper introduces an approach to construct XC functionals with inputs from convolutions of arbitrary kernels with the electron density, providing a route to move beyond Jacob's ladder. We derive the variational derivative of these functionals, showing consistency with the generalized gradient approximation (GGA), and provide equations for variational derivatives based on multipole features from convolutional kernels. A proof-of-concept functional, PBEq, which generalizes the PBEα\alpha framework where α\alpha is a spatially-resolved function of the monopole of the electron density, is presented and implemented. It allows a single functional to use different GGAs at different spatial points in a system, while obeying PBE constraints. Analysis of the results underlines the importance of error cancellation and the XC potential in data-driven functional design. After testing on small molecules, bulk metals, and surface catalysts, the results indicate that this approach is a promising route to simultaneously optimize multiple properties of interest

    Version 2.0.0 -- SPARC: Simulation Package for Ab-initio Real-space Calculations

    Full text link
    SPARC is an accurate, efficient, and scalable real-space electronic structure code for performing ab initio Kohn-Sham density functional theory calculations. Version 2.0.0 of the software provides increased efficiency, and includes spin-orbit coupling, dispersion interactions, and advanced semilocal/hybrid exchange-correlation functionals. These new features further expand the range of physical applications amenable to first principles investigation using SPARC.Comment: 10 pages, 2 figure
    corecore