585 research outputs found

    Artist Ranking Through Analysis of On-line Community Comments

    Get PDF
    We describe an approach to measure the popularity of music tracks, albums and artists by analyzing the comments of music listeners in social networking online communities such as MySpace. This measure of popularity appears to be more accurate than the traditional measure based on album sales figures, as demonstrated by our focus group study. We faced many challenges in our attempt to generate a popularity ranking from the user comments on social networking sites, e.g., broken English sentences, comment spam, etc. We discuss the steps we took to overcome these challenges and describe an end to end system for generating a new popularity measure based on online comments, and the experiments performed to evaluate its success

    Multi-model ensemble schemes for predicting northeast monsoon rainfall over peninsular India

    Get PDF
    The northeast (NE) monsoon season (October, November and December) is the major period of rainfall activity over south peninsular India. This study is mainly focused on the prediction of northeast monsoon rainfall using lead-1 products (forecasts for the season issued in beginning of September) of seven general circulation models (GCMs). An examination of the performances of these GCMs during hindcast runs (1982–2008) indicates that these models are not able to simulate the observed interannual variability of rainfall. Inaccurate response of the models to sea surface temperatures may be one of the probable reasons for the poor performance of these models to predict seasonal mean rainfall anomalies over the study domain. An attempt has been made to improve the accuracy of predicted rainfall using three different multi-model ensemble (MME) schemes, viz., simple arithmetic mean of models (EM), principal component regression (PCR) and singular value decomposition based multiple linear regressions (SVD). It is found out that among these three schemes, SVD based MME has more skill than other MME schemes as well as member models

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Incremental hierarchical clustering of text documents

    No full text
    A version of cobweb/classit is proposed to incrementally cluster text documents into cluster hierarchies. The modification to classit consists of changes to the underlying distributional assumption of the original algorithm that are suggested by text document data. Both the algorithms are evaluated using standard text document datasets. We show that the modified algorithm performs better than the original Classit when presented with Reuters newswire articles in temporal order, i.e., the order in which they are going to be presented in real life situation. It also performs better than the original Classit on the larger of eleven standard text clustering datasets we used

    Incremental hierarchical clustering of text documents

    No full text
    Incremental hierarchical text document clustering algorithms are important in organizing documents generated from streaming on-line sources, such as, Newswire and Blogs. However, this is a relatively unexplored area in the text document clustering literature. Popular incremental hierarchical clustering algorithms, namely Cobweb and Classit, havenot been widely used with text document data. We discuss why, in the current form, these algorithms are not suitable for text clustering and propose an alternative formulation that includes changes to the underlying distributional assumption of the algorithm in order to conform with the data. Both the original Classit algorithm and our proposed algorithm are evaluated using Reuters newswire articles and Ohsumed dataset

    A Hidden Markov Model for Collaborative Filtering

    No full text
    In this paper, we present a method to make personalized recommendations when user preferences change over time. Most of the works in the recommender systems literature have been developed under the assumption that user preference has a static pattern. However, this is a strong assumption especially when the user is observed over a long period of time. With the help of a data set on employees’ blog reading behavior, we show that users’ product selection behaviors change over time. We propose a hidden Markov model to correctly interpret the users’ product selection behaviors and make personalized recommendations. The user preference is modeled as a hidden Markov sequence. A variable number of product selections of different types by each user in each time period requires a novel observation model. We propose a negative binomial mixture of multinomial to model such observations. This allows us to identify stable global preferences of users and to track individual users through these preferences. We evaluate our model using three real-world data sets with different characteristics. They include data on employee blog reading behavior inside a firm, users’ movie rating behavior at Netflix, and users’ music listening behavior collected through last.fm. We compare the recommendation performance of the proposed model with that of a number of collaborative filtering algorithms and a recently proposed temporal link prediction algorithm. We find that the proposed HMM-based collaborative filter performs as well as the best among the alternative algorithms when the data is sparse or static. However, it outperforms the existing algorithms when the data is less sparse and the user preference is changing. We further examine the performances of the algorithms using simulated data with different characteristics and highlight the scenarios where it is beneficial to use a dynamic model to generate product recommendation

    Seeking Variety: A Dynamic Model of Employee Blog Reading Behavior

    No full text
    We investigate the dynamics of blog reading behavior of employees in an enterprise blogosphere. A dynamic model is developed and calibrated using longitudinal data from a Fortune 1000 IT services firm. We identify a variety-seeking behavior of blog readers where they frequently switch from reading on one set of topics to another dynamically. Our results indicate that this switching behavior is induced by the textual characteristics (sentiment and quality) of the posts read, reader characteristics (status, location, expertise), or a readers' inherent desire for variety. Our modeling framework allows us to segregate the impact of post-textual characteristics on attracting readers from retaining them. We find that the textual characteristics that appeal to the sentiment of the reader affect both reader attraction and retention. However, textual characteristics that reflect only the quality of the posts affect only reader retention. The modeling framework and findings of this study highlight opportunities for a firm to influence blog reading behavior of its employees to align it with its goals. We provide directions to improve the utility of blogs as a medium for knowledge sharing. Overall, the blog reading dynamics estimation of this study contributes to the development of theoretically grounded understanding of reading behavior of individuals in online settings and more specifically in communities formed around user generated content.</p
    corecore