8,270 research outputs found

    LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T)f(R,T) gravity

    Full text link
    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T)f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the Λ\Lambda CDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.Comment: Published versio

    Ba+^+ Quadrupole Polarizabilities: Theory versus Experiment

    Full text link
    Three different measurements have been reported for the ground state quadrupole polarizability in the singly ionized barium (Ba+^+) which disagree with each other. Our calculation of this quantity using the relativistic coupled-cluster method disagrees with two of the experimental values and is within the error bars of the other. We discuss the issues related to the accuracy of our calculations and emphasize the need for further experiments to measure the quadrupole polarizability for this state and/or the 5D states.Comment: 6 pages, 3 table

    Effective-energy budget in multiparticle production in nuclear collisions

    Get PDF
    The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The model in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. The model is based on the earlier proposed approach, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this model, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher energy measurements in heavy-ion collisions at the LHC.Comment: Regular article, Replaced with published versio
    corecore