2,680 research outputs found
General analytic formulae for attractor solutions of scalar-field dark energy models and their multi-field generalizations
We study general properties of attractors for scalar-field dark energy
scenarios which possess cosmological scaling solutions. In all such models
there exists a scalar-field dominant solution with an energy fraction
\Omega_{\phi}=1 together with a scaling solution. A general analytic formula is
given to derive fixed points relevant to dark energy coupled to dark matter. We
investigate the stability of fixed points without specifying the models of dark
energy in the presence of non-relativistic dark matter and provide a general
proof that a non-phantom scalar-field dominant solution is unstable when a
stable scaling solution exists in the region \Omega_{\phi}<1. A phantom
scalar-field dominant fixed point is found to be classically stable. We also
generalize the analysis to the case of multiple scalar fields and show that for
a non-phantom scalar field assisted acceleration always occurs for all
scalar-field models which have scaling solutions. For a phantom field the
equation of state approaches that of cosmological constant as we add more
scalar fields.Comment: 11 pages, no figures, version to appear in Physical Review
New Vistas in Braneworld Cosmology
Traditionally, higher-dimensional cosmological models have sought to provide
a description of the fundamental forces in terms of a unifying geometrical
construction. In this essay we discuss how, in their present incarnation,
higher-dimensional `braneworld' models might provide answers to a number of
cosmological puzzles including the issue of dark energy and the nature of the
big-bang singularity.Comment: Honorable mention in the 2002 Essay Competition of the Gravity
Research Foundation. 10 pages, 2 figure
Reconstruction of general scalar-field dark energy models
The reconstruction of scalar-field dark energy models is studied for a
general Lagrangian density , where is a kinematic term of a
scalar field . We implement the coupling between dark energy and dark
matter and express reconstruction equations using two observables: the Hubble
parameter and the matter density perturbation . This allows us to
determine the structure of corresponding theoretical Lagrangian together with
the coupling from observations. We apply our formula to several forms of
Lagrangian and present concrete examples of reconstruction by using the recent
Gold dataset of supernovae measurements. This analysis includes a generalized
ghost condensate model as a way to cross a cosmological-constant boundary even
for a single-field case.Comment: 8 pages, 2 figure
Quantal Density Functional Theory of Degenerate States
The treatment of degenerate states within Kohn-Sham density functional theory
(KS-DFT) is a problem of longstanding interest. We propose a solution to this
mapping from the interacting degenerate system to that of the noninteracting
fermion model whereby the equivalent density and energy are obtained via the
unifying physical framework of quantal density functional theory (Q-DFT). We
describe the Q-DFT of \textit{both} ground and excited degenerate states, and
for the cases of \textit{both} pure state and ensemble v-representable
densities. This then further provides a rigorous physical interpretation of the
density and bidensity energy functionals, and of their functional derivatives,
of the corresponding KS-DFT. We conclude with examples of the mappings within
Q-DFT.Comment: 10 pages. minor changes made. to appear in PR
Age problem in holographic dark energy
We study the age problem of the universe with the holographic DE model
introduced in [21], and test the model with some known old high redshift
objects (OHRO). The parameters of the model have been constrained using the
SNIa, CMB and BAO data set. We found that the age of the old quasar APM 08
279+5255 at z = 3.91 can be described by the model.Comment: 13 page
An interacting model for the cosmological dark sector
We discuss a new interacting model for the cosmological dark sector in which
the attenuated dilution of cold dark matter scales as , where f(a)
is an arbitrary function of the cosmic scale factor . From thermodynamic
arguments, we show that f(a) is proportional to entropy source of the particle
creation process. In order to investigate the cosmological consequences of this
kind of interacting models, we expand f(a) in a power series and viable
cosmological solutions are obtained. Finally, we use current observational data
to place constraints on the interacting function f(a).Comment: 5 pages, 3 figures, Phys. Rev. D (in press
The phase-space of generalized Gauss-Bonnet dark energy
The generalized Gauss-Bonnet theory, introduced by Lagrangian F(R,G), has
been considered as a general modified gravity for explanation of the dark
energy. G is the Gauss-Bonnet invariant. For this model, we seek the situations
under which the late-time behavior of the theory is the de-Sitter space-time.
This is done by studying the two dimensional phase space of this theory, i.e.
the R-H plane. By obtaining the conditions under which the de-Sitter space-time
is the stable attractor of this theory, several aspects of this problem have
been investigated. It has been shown that there exist at least two classes of
stable attractors : the singularities of the F(R,G), and the cases in which the
model has a critical curve, instead of critical points. This curve is R=12H^2
in R-H plane. Several examples, including their numerical calculations, have
been discussed.Comment: 19 pages, 11 figures, typos corrected, a reference adde
Probing the Coupling between Dark Components of the Universe
We place observational constraints on a coupling between dark energy and dark
matter by using 71 Type Ia supernovae (SNe Ia) from the first year of the
five-year Supernova Legacy Survey (SNLS), the cosmic microwave background (CMB)
shift parameter from the three-year Wilkinson Microwave Anisotropy Probe
(WMAP), and the baryon acoustic oscillation (BAO) peak found in the Sloan
Digital Sky Survey (SDSS). The interactions we study are (i) constant coupling
delta and (ii) varying coupling delta(z) that depends on a redshift z, both of
which have simple parametrizations of the Hubble parameter to confront with
observational data. We find that the combination of the three databases
marginalized over a present dark energy density gives stringent constraints on
the coupling, -0.08 < delta < 0.03 (95% CL) in the constant coupling model and
-0.4 < delta_0 < 0.1 (95% CL) in the varying coupling model, where delta_0 is a
present value. The uncoupled LambdaCDM model (w_X = -1 and delta = 0) still
remains a good fit to the data, but the negative coupling (delta < 0) with the
equation of state of dark energy w_X < -1 is slightly favoured over the
LambdaCDM model.Comment: 9 pages, 7 figures, RevTeX, minor corrections, references added,
accepted for publication in Phys. Rev.
Observational constraints on interacting quintessence models
We determine the range of parameter space of Interacting Quintessence Models
that best fits the recent WMAP measurements of Cosmic Microwave Background
temperature anisotropies. We only consider cosmological models with zero
spatial curvature. We show that if the quintessence scalar field decays into
cold dark matter at a rate that brings the ratio of matter to dark energy
constant at late times,the cosmological parameters required to fit the CMB data
are: \Omega_x = 0.43 \pm 0.12, baryon fraction \Omega_b = 0.08 \pm 0.01, slope
of the matter power spectrum at large scals n_s = 0.98 \pm 0.02 and Hubble
constant H_0 = 56 \pm 4 km/s/Mpc. The data prefers a dark energy component with
a dimensionless decay parameter c^2 =0.005 and non-interacting models are
consistent with the data only at the 99% confidence level. Using the Bayesian
Information Criteria we show that this exra parameter fits the data better than
models with no interaction. The quintessence equation of state parameter is
less constrained; i.e., the data set an upper limit w_x \leq -0.86 at the same
level of significance. When the WMAP anisotropy data are combined with
supernovae data, the density parameter of dark energy increases to \Omega_x
\simeq 0.68 while c^2 augments to 6.3 \times 10^{-3}. Models with quintessence
decaying into dark matter provide a clean explanation for the coincidence
problem and are a viable cosmological model, compatible with observations of
the CMB, with testable predictions. Accurate measurements of baryon fraction
and/or of matter density independent of the CMB data, would support/disprove
these models.Comment: 16 pages, Revtex4, 5 eps figures, to appear in Physical Review
APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND
A proposal is made to test Newton's inverse-square law using the perihelion
shift of test masses (planets) in free fall within a spacecraft located at the
Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will
operate in a drag-free environment with controlled experimental conditions and
minimal interference from terrestrial sources of contamination. We demonstrate
that such a space experiment can probe the presence of a "hidden" fifth
dimension on the scale of a micron, if the perihelion shift of a "planet" can
be measured to sub-arc-second accuracy. Some suggestions for spacecraft design
are made.Comment: 17 pages, revtex, references added. To appear in Special issue of
IJMP
- …