25 research outputs found

    Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    Get PDF
    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.

    Jurassic uplift and erosion of the northeast Queensland continental margin: evidence from (U–Th)/He thermochronology combined with U–Pb detrital zircon age spectra

    No full text
    The Jurassic–Cretaceous Great Artesian Basin is the most extensive, and largest volume, sedimentary feature of continental Australia. The source of its mud-dominated Cretaceous infill is attributed largely to contemporary magmatism along the continental margin to the east, but the source of its Jurassic infill, dominated by quartz sandstone, remains unconstrained. This paper investigates the question of a Jurassic sediment source for the northern part of the basin. Jurassic uplift and exhumation of the continental margin crustal sector to the east provided the primary Jurassic sediment source. (U–Th)/He data are presented for zircon and apatite from Pennsylvanian to mid Permian granitoids of the Kennedy Igneous Association distributed within the northern Tasmanides between the Townsville and Cairns regions and for coeval granites of the Urannha batholith from the Mount Carlton district (N Bowen Basin), also within the northern Tasmanides. The data from zircon indicate widespread Jurassic exhumation of a crustal tract located to the east of the northern Great Artesian Basin and largely occupied by rocks of the Tasmanides. Detrital zircon age spectra for samples of the Jurassic Hutton and Blantyre sandstones from the northeastern margin of the Great Artesian Basin show their derivation to be largely from rocks of the northern Tasmanides. In combination, the detrital age spectra and (U–Th)/He data from zircon indicate exhumation owing to uplift generating appreciable physiographic relief along the north Queensland continental margin during the Jurassic, shedding sediment westward into the Great Artesian Basin during its early development. A portion of (U–Th)/He data for zircon are consistent with late Permian–mid Triassic exhumation within the Tasmanides, attributable to the influence of the Hunter–Bowen Orogeny. Evidence of Cretaceous and Paleocene exhumation episodes is also indicated for some samples, mainly by apatite (U–Th)/He analysis, consistent with data previously published from fission track studies. Overall, new data from the present study reveal that the exhumation related to Jurassic regional uplift and the subsequent erosional reworking of the northeast Australian continental margin is critical for the evolution and development of the northern side of the Great Artesian Basin in eastern Australia. Apart from this, another two previously suggested Permian–Triassic and Cretaceous exhumation and uplift episodes along the northeast Australian continental margin are also confirmed by the dataset of this study

    Jurassic uplift and erosion of the northeast Queensland continental margin: evidence from (U–Th)/He thermochronology combined with U–Pb detrital zircon age spectra

    No full text
    The Jurassic–Cretaceous Great Artesian Basin is the most extensive, and largest volume, sedimentary feature of continental Australia. The source of its mud-dominated Cretaceous infill is attributed largely to contemporary magmatism along the continental margin to the east, but the source of its Jurassic infill, dominated by quartz sandstone, remains unconstrained. This paper investigates the question of a Jurassic sediment source for the northern part of the basin. Jurassic uplift and exhumation of the continental margin crustal sector to the east provided the primary Jurassic sediment source. (U–Th)/He data are presented for zircon and apatite from Pennsylvanian to mid Permian granitoids of the Kennedy Igneous Association distributed within the northern Tasmanides between the Townsville and Cairns regions and for coeval granites of the Urannha batholith from the Mount Carlton district (N Bowen Basin), also within the northern Tasmanides. The data from zircon indicate widespread Jurassic exhumation of a crustal tract located to the east of the northern Great Artesian Basin and largely occupied by rocks of the Tasmanides. Detrital zircon age spectra for samples of the Jurassic Hutton and Blantyre sandstones from the northeastern margin of the Great Artesian Basin show their derivation to be largely from rocks of the northern Tasmanides. In combination, the detrital age spectra and (U–Th)/He data from zircon indicate exhumation owing to uplift generating appreciable physiographic relief along the north Queensland continental margin during the Jurassic, shedding sediment westward into the Great Artesian Basin during its early development. A portion of (U–Th)/He data for zircon are consistent with late Permian–mid Triassic exhumation within the Tasmanides, attributable to the influence of the Hunter–Bowen Orogeny. Evidence of Cretaceous and Paleocene exhumation episodes is also indicated for some samples, mainly by apatite (U–Th)/He analysis, consistent with data previously published from fission track studies. Overall, new data from the present study reveal that the exhumation related to Jurassic regional uplift and the subsequent erosional reworking of the northeast Australian continental margin is critical for the evolution and development of the northern side of the Great Artesian Basin in eastern Australia. Apart from this, another two previously suggested Permian–Triassic and Cretaceous exhumation and uplift episodes along the northeast Australian continental margin are also confirmed by the dataset of this study

    Hydrothermal alteration and mineralisation at the Mt Carlton high-sulphidation Au- Ag-Cu epithermal deposit (NE Queensland, Australia)

    No full text
    The Mt Carlton high-sulphidation Au-Ag-Cu deposit is located in the northern Bowen Basin, NE Queensland (Australia). High-grade mineralisation is confined to NE-trending, steeply dipping (75-90°) structures, and is hosted in a rhyodacitic unit of the Lizzie Creek Volcanic Group (Early Permian). The core of the hydrothermal system shows silicic alteration, with variable amounts of alunite (disseminated-and vein-type), anhydrite and pyrite. Outwards, the silicic zone progressively grades into an envelope of quartz- alunite-barite-pyrite → quartz-dickite-kaolinite-pyrite → illite-montmorillonite-pyrite alteration. After the alteration, the majority of metals were deposited in an initial stage of high-sulphidation mineralisation, dominated by enargite-luzonite-pyrite. This stage is overprinted by two intermediate-sulphidation stages, one Zn-Pb-Au rich (sphalerite-galena-electrum) and one Cu-(Au) rich (tennantite), respectively. The known mineralisation along ~800m strike length shows a distinct metal zonation from NE to SW of Cu-Au→ Cu+Zn+Pb+Ag →Ag+Pb →Ag. This metal zonation is mainly linked to the mineralogy of the initial high- sulphidation ore stage. Ar-Ar dating of alunite from the Mt Carlton lithocap gives an age of 284.3 ± 2.0 Ma. It is not distinguishable from U-Pb ages of the Lizzie Creek volcanic rocks (283-287 ± 2-4 Ma), indicating that the mineralisation occurred shortly after the formation of the host rocks. Stable isotope analyses (S, O, H) of sulfates (alunite, anhydrite and barite) and coeval pyrite suggest that they formed from a SO42- -dominated fluid with a mixed magmatic-meteoric signature. Thermometric calculations based on S isotope pairs indicate a temperature range of ~220-130 °C for the hydrothermal alteration stage (alunite-pyrite), and ~130-115 °C for late, intermediate-sulphidation ore (sphalerite-galena, sphalerite-pyrite). The combined petrographic and isotopic evidence thus suggest that a cooling fluid that evolved from high - to intermediate-sulphidation states was involved in the genesis of the Mt Carlton deposit
    corecore