51 research outputs found

    Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis

    Get PDF
    BACKGROUND: Scoliosis is the most common type of spinal deformity. In North American children, adolescent idiopathic scoliosis (AIS) makes up about 90% of all cases of scoliosis. While its prevalence is about 2% to 3% in children aged between 10 to 16 years, girls are more at risk than boys for severe progression with a ratio of 3.6 to 1. The aim of the present study was to test the hypothesis that idiopathic scoliosis interferes with the mechanisms responsible for sensory-reweighting during balance control. METHODS: Eight scoliosis patients (seven female and one male; mean age: 16.4 years) and nine healthy adolescents (average age 16.5 years) participated in the experiment. Visual and ankle proprioceptive information was perturbed (eyes closed and/or tendon vibration) suddenly and then returned to normal (eyes open and/or no tendon vibration). An AMTI force platform was used to compute centre of pressure root mean squared velocity and sway density curve. RESULTS: For the control condition (eyes open and no tendon vibration), adolescent idiopathic scoliosis patients had a greater centre of pressure root mean squared velocity (variability) than control participants. Reintegration of ankle proprioception, when vision was either available or removed, led to an increased centre of pressure velocity variability for the adolescent idiopathic scoliosis patients whereas the control participants reduced their centre of pressure velocity variability. Moreover, in the absence of vision, adolescent idiopathic scoliosis exhibited an increased centre of pressure velocity variability when ankle proprioception was returned to normal (i.e. tendon vibration stopped). The analysis of the sway density plot suggests that adolescent idiopathic scoliosis patients, during sensory reintegration, do not scale appropriately their balance control commands. CONCLUSION: Altogether, the present results demonstrate that idiopathic scoliosis adolescents have difficulty in reweighting sensory inputs following a brief period of sensory deprivation

    Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescent idiopathic scoliosis is characterized by a three-dimensional deviation of the vertebral column and its etiopathogenesis is unknown. Various factors cause idiopathic scoliosis, and among these a prominent role has been attributed to the vestibular system. While the deficits in sensorimotor transformations have been documented in idiopathic scoliosis patients, little attention has been devoted to their capacity to integrate vestibular information for cognitive processing for space perception. Seated idiopathic scoliosis patients and control subjects experienced rotations of different directions and amplitudes in the dark and produced saccades that would reproduce their perceived spatial characteristics of the rotations (vestibular condition). We also controlled for possible alteration of the oculomotor and vestibular systems by measuring the subject's accuracy in producing saccades towards memorized peripheral targets in absence of body rotation and the gain of their vestibulo-ocular reflex.</p> <p>Results</p> <p>Compared to healthy controls, the idiopathic scoliosis patients underestimated the amplitude of their rotations. Moreover, the results revealed that idiopathic scoliosis patients produced accurate saccades to memorized peripheral targets in absence of body rotation and that their vestibulo-ocular reflex gain did not differ from that of control participants.</p> <p>Conclusion</p> <p>Overall, results of the present study demonstrate that idiopathic scoliosis patients have an alteration in cognitive integration of vestibular signals. It is possible that severe spine deformity developed partly due to impaired vestibular information travelling from the cerebellum to the vestibular cortical network or alteration in the cortical mechanisms processing the vestibular signals.</p

    Spinal decompensation in degenerative lumbar scoliosis

    Get PDF
    Due to the aging population, degenerative scoliosis is a growing clinical problem. It is associated with back pain and radicular symptoms. The pathogenesis of degenerative scoliosis lies in degenerative changes of the spinal structures, such as the intervertebral disc, the facet joints and the vertebrae itself. Possibly muscle weakness also plays a role. However, it is not clear what exactly causes the decompensation to occur and what determines the direction of the curve. It is known that in the normal spine a pre-existing rotation exists at the thoracic level, but not at the lumbar level. In this retrospective study we have investigated if a predominant curve pattern can be found in degenerative scoliosis and whether symptoms are predominantly present at one side relative to the curve direction. The lumbar curves of 88 patients with degenerative scoliosis were analyzed and symptoms were recorded. It was found that curve direction depended significantly on the apical level of the curve. The majority of curves with an apex above L2 were convex to the right, whereas curves with an apex below L2 were more frequently convex to the left. This would indicate that also in degenerative scoliosis the innate curvature and rotational pattern of the spine plays a role in the direction of the curve. Unilateral symptoms were not coupled to the curve direction. It is believed that the symptoms are related to local and more specific degenerative changes besides the scoliotic curve itself

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Simvastatin downregulates adipogenesis in 3T3-l1 preadipocytes and orbital fibroblasts from graves’ ophthalmopathy patients

    No full text
    Background: Smoking is a strong risk factor for the development of Graves’ ophthalmopathy (GO). Immediate early genes (IEGs) are overexpressed in patients with active GO compared to healthy controls. The aim of this study was to study the effects of tobacco smoking and simvastatin on preadipocytes and orbital fibroblasts (OFs) in the adipogenic process. Methods: Cigarette smoke extract (CSE) was generated by a validated pump system. Mouse 3T3-L1 preadipocytes or OFs were exposed to 10% CSE with or without simvastatin. Gene expression was studied in preadipocytes and OFs exposed to CSE with or without simvastatin and compared to unexposed cells or cells treated with a differentiation cocktail. Results: In 3T3-L1 preadipocytes, Cyr61, Ptgs2, Egr1 and Zfp36 expression levels were two-fold higher in cells exposed to CSE than in unexposed cells. Simvastatin downregulated the expression of these genes (1.6-fold, 5.5-fold, 3.3-fold, 1.4-fold, respectively). CSE alone could not stimulate preadipocytes to differentiate. Scd1, Ppar-γ and adipogenesis were downregulated in simvastatin-treated preadipocytes compared to nontreated preadipocytes 18-, 35- and 1.7-fold, respectively. In OFs, similar effects of CSE were seen on the expression of CYR61 (1.4-fold) and PTGS2 (3-fold). Simvastatin downregulated adipogenesis, PPAR-γ (2-fold) and SCD (27-fold) expression in OFs. Conclusion: CSE upregulated early adipogenic genes in both mouse 3T3-L1 preadipocytes and human OFs but did not by itself induce adipogenesis. Simvastatin inhibited the expression of both early and late adipogenic genes and adipogenesis in preadipocytes and human OFs. The effect of simvastatin should be investigated in a clinical trial of patients with GO

    The effects of load carriage and bracing on the balance of schoolgirls with adolescent idiopathic scoliosis

    No full text
    The balance function of children is known to be affected by carriage of a school backpack. Children with adolescent idiopathic scoliosis (AIS) tend to show poorer balance performance, and are typically treated by bracing, which further affects balance. The objective of this study is to examine the combined effects of school backpack carriage and bracing on girls with AIS. A force platform was used to record center of pressure (COP) motion in 20 schoolgirls undergoing thoraco-lumbar-sacral orthosis (TLSO brace) treatment for AIS. COP data were recorded with and without brace while carrying a backpack loaded at 0, 7.5, 10, 12.5 and 15% of the participant’s bodyweight (BW). Ten participants stood on a solid base and ten stood on a foam base, while all participants kept their eyes closed throughout. Sway parameters were analyzed by repeated measures ANOVA. No effect of bracing was found for the participants standing on the solid base, but wearing the brace significantly increased the sway area, displacement and medio-lateral amplitude in the participants standing on the foam base. The medio-lateral sway amplitude of participants standing on the solid base significantly increased with backpack load, whereas significant increases in antero-posterior sway amplitude, sway path length, sway area per second and short term diffusion coefficient were found in participants standing on the foam base. The poorer balance performance exhibited by participants with AIS when visual and somatosensory input is challenged appears to be exacerbated by wearing a TLSO brace, but no interactive effect between bracing and backpack loading was found
    • 

    corecore