83 research outputs found

    Synthesis and Properties of Inulin Based Microgels

    Get PDF
    AbstractCross-linked inulin (X-inulin) microparticles were synthesized in reverse micelles using water-in-oil microemulsion polymerization. Linear inulin was crosslinked with divinyl sulfone (DVS) in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) inverse microemulsion under basic conditions. These particles were demonstrated to be excellent scaffolds for the in situ synthesis of CdS quantum dots (Q-dots). The inulin-based particles were shown to be non-cytotoxic in fibroblast cell culture, and degradable under acidic and basic conditions. Furthermore, gallic acid and caffeine were used as model drugs for loading and release studies from these particles, illustrating their potential as drug carriers with controlled release

    Rosmarinic acid particles with versatile biomedical functions

    No full text
    255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water -- MAR 18-22, 2018 -- New Orleans, LAWOS: 00043553770131

    Synthesis and characterization of poly(Naringin) particles as new biomaterials

    No full text
    255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water -- MAR 18-22, 2018 -- New Orleans, LAWOS: 00043553990384

    Enhanced Bioactive Properties of Halloysite Nanotubes via Polydopamine Coating

    No full text
    Halloysite nanotubes (HNT) were coated five times with dopamine (DOPA) in a tris buffer medium at pH 8.5 to acquire polydopamine-coated HNTs (PDOPA@HNT), e.g., PDOPA1@HNT, PDOPA3@HNT, and PDOPA5@HNT. Upon coating HNT with PDOPA, the surface area, pore volume, and pore size were decreased depending on the number of coatings. While the surface area of HNT was 57.9 m2/g, by increasing the number of coatings from 1 to 5, it was measured as 55.9, 53.4, 53.3, 47.4, and 46.4 m2/g, respectively. The isoelectric point (IEP) for HNTs was determined as 4.68, whereas these values are estimated as 2.31 for PDOPA1@HNTs, 3.49 for PDOPA3@HNT, and 3.55 for PDOPA5@HNT. Three different antioxidant studies were conducted for HNT and PDOPA@HNT, and the total phenol (TPC) value of HNT was found to be 150.5 ± 45.9 µmol gallic acid (GA) equivalent. The TPC values for PDOPA1@HNT, PDOPA3@HNT and PDOPA5@HNT coatings were found to be 405.5 ± 25.0, 750.0 ± 69.9, and 1348.3 ± 371.7 µmol GA equivalents, respectively. The Fe(II) chelation capacity of HNT was found to be 20.5% ± 1.2%, while the PDOPA1@HNT, PDOPA3@HNT and PDOPA5@HNT values were found to be 49.9 ± 6.5, 36.6 ± 12.7 and 25.4 ± 1.2%, respectively. HNT and PDOPA@HNTs inhibited the α-glucosidase (AG) enzyme to greater extents than acetylcholinesterase (AChE). As a result, the DOPA modification of HNTs was rendered to provide additional characteristics, e.g., antioxidant properties and higher AChE and AG enzymes inhibition capabilities. Therefore, PDOPA@HNTs have great potential as biomaterials

    Use of Heteroatom-Doped g-C3N4 Particles as Catalysts for Dehydrogenation of Sodium Borohydride in Methanol

    No full text
    Here, graphitic carbon nitride (g-C3N4) was synthesized from melamine, doped with heteroatoms, such as B, S, and P reported using boric acid, sulfur, and phosphorous red as dopants, respectively. The catalytic performances of g-C3N4, and heteroatom-doped g-C3N4 (H@g-C3N4 (H=B, S or P) particles as catalysts in the dehydrogenation of sodium borohydride (NaBH4) in methanol to generate hydrogen (H2) were investigated. The prepared g-C3N4-based structures were used as catalysts for hydrogen (H2) production in the dehydrogenation reaction of sodium borohydride (NaBH4) in methanol. The catalytic performance of H@g-C3N4 (H=B, S or P) structures in the dehydrogenation reaction of sodium borohydride (NaBH4) in methanol was determined to be higher than the catalytic performance of the bare g-C3N4 structure. The hydrogen generation rate (HGR) values were calculated for the reactions catalyzed by B@g-C3N4, P@g-C3N4, and S@g-C3N4 as 609 ± 48, 699 ± 48, and 429 ± 55 mL H2/g of cat.min, respectively, which is only 282 ± 11 mL H2/g of cat.min for the native g-C3N4-catalyzed one. The activation energies (Ea) were found to be relatively low, such as 31.2, 26.9, and 31.2 kJ/mol, for the reactions catalyzed by B@g-C3N4, P@g-C3N4, and S@g-C3N4, respectively. In addition, in the reuse studies, it was concluded that B@g-C3N4, P@g-C3N4, and S@g-C3N4 catalysts can readily complete the reaction with 100% conversion, even in five consecutive uses, and afforded promising potential with more than 80% activity for each use

    Use of Heteroatom-Doped g-C<sub>3</sub>N<sub>4</sub> Particles as Catalysts for Dehydrogenation of Sodium Borohydride in Methanol

    No full text
    Here, graphitic carbon nitride (g-C3N4) was synthesized from melamine, doped with heteroatoms, such as B, S, and P reported using boric acid, sulfur, and phosphorous red as dopants, respectively. The catalytic performances of g-C3N4, and heteroatom-doped g-C3N4 (H@g-C3N4 (H=B, S or P) particles as catalysts in the dehydrogenation of sodium borohydride (NaBH4) in methanol to generate hydrogen (H2) were investigated. The prepared g-C3N4-based structures were used as catalysts for hydrogen (H2) production in the dehydrogenation reaction of sodium borohydride (NaBH4) in methanol. The catalytic performance of H@g-C3N4 (H=B, S or P) structures in the dehydrogenation reaction of sodium borohydride (NaBH4) in methanol was determined to be higher than the catalytic performance of the bare g-C3N4 structure. The hydrogen generation rate (HGR) values were calculated for the reactions catalyzed by B@g-C3N4, P@g-C3N4, and S@g-C3N4 as 609 ± 48, 699 ± 48, and 429 ± 55 mL H2/g of cat.min, respectively, which is only 282 ± 11 mL H2/g of cat.min for the native g-C3N4-catalyzed one. The activation energies (Ea) were found to be relatively low, such as 31.2, 26.9, and 31.2 kJ/mol, for the reactions catalyzed by B@g-C3N4, P@g-C3N4, and S@g-C3N4, respectively. In addition, in the reuse studies, it was concluded that B@g-C3N4, P@g-C3N4, and S@g-C3N4 catalysts can readily complete the reaction with 100% conversion, even in five consecutive uses, and afforded promising potential with more than 80% activity for each use

    Poly(vinyl alcohol)-tannic Acid Cryogel Matrix as Antioxidant and Antibacterial Material

    No full text
    The biocompatible, viscoelastic properties of poly(vinyl alcohol) (PVA) in combination with the antimicrobial and antioxidant natural polyphenolic, tannic acid (TA), and the natural flavonoid and antioxidant curcumin (Cur), were used in the preparation of PVA:TA and PVA:TA:Cur cryogel composites using cryotropic gelation to combine the individually beneficial properties. The effect of TA content on the antioxidant and antimicrobial activities of PVA:TA cryogel composites and the antioxidant activities of PVA:TA:Cur cryogel composites was determined using Trolox equivalent antioxidant capacity (TEAC) and total phenol content (TPC) assays, and were compared. The PVA:TA:Cur cryogel composite showed the highest antioxidant activity, with a TEAC value of 2.10 &plusmn; 0.24 and a TPC value of 293 &plusmn; 12.00. The antibacterial capacity of the PVA:TA and PVA:TA:Cur 1:1:0.1 cryogel composites was examined against two different species of bacteria, E. coli and S. aureus. It was found that the minimum inhibition concentration (MIC) value of the PVA:TA:Cur 1:1:0.1 cryogel composites varied between 5 and 10 mg/mL based on the type of microorganism, and the minimum bactericidal concentration (MBC) value was 20 mg/mL irrespective of the type of microorganism. Furthermore, the hemocompatibility of the PVA:TA cryogel composites was evaluated by examining their hemolytic and coagulation behaviors. PVA:TA 1:1 cryogels with a value of 95.7% revealed the highest blood clotting index value amongst all of the synthesized cryogels, signifying the potential for blood contacting applications. The release of TA and Cur from the cryogel composites was quantified at different pH conditions, i.e., 1.0, 7.4, and 9.0, and additionally in ethanol (EtOH) and an ethanol&ndash;water (EtOH:Wat) mixture. The solution released from the PVA:TA cryogels in PBS was tested for inhibition capability against &alpha;-glucosidase (E.C. 3.2.1.20). Concentration-dependent enzyme inhibition was observed, and 70 &micro;L of 83 &micro;g/mL PVA:TA (1:1) cryogel in PBS inhibited &alpha;-glucosidase enzyme solution of 0.03 unit/mL in 70 &micro;L by 81.75 &plusmn; 0.96%

    P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material

    No full text
    WOS: 000388046900039PubMed ID: 27770897Super porous poly(2-hydroxy ethyl methacrylate) (p(HEMA)) cryogel was successfully synthesized by using polyethylene glycol diacrylate (p(EGDA)) crosslinker under cryogenic conditions. Poly(Tannic acid) (p(TA)) macro-, micro-, and nanopartides prepared from a natural polyphenol, tannic acid (TA), were embedded into p(HEMA) cryogel networks to obtain composite p(TA) particle-embedded p(HEMA) cryogel. Different size ranges of spherical p(TA) particles, 2000-500 mu m, 500-200 mu m, 200-20 mu m, and 20-0.5 mu m size, were included in the cryogel network and illustrated by digital camera, optic microscope, and SEM images of the microgelcryogel network. The swelling properties and moisture content of p(TA) microgel-embedded p(HEMA) cryogel were investigated at wound healing pH conditions such as pH 5.4, 7A, and 9 at 37.5 degrees C, and the highest swelling capacity was found at pH 9 with 972 +/- 2% swelling in 30 s. Higher amounts of DI water were quickly absorbed by p(HEMA)-based cryogel, and moisture retention within the cryogel structure for a longer time period at room temperature is due to existence of p(TA) particles. Degradation profiles of p(TA) particle-embedded p(HEMA) cryogel were shown to be controlled by different pH conditions, and a linear release profile was found with total cumulative release of 5.8 +/- 0.8 mg/g TA up to 12 days at pH 7A and 37.5 degrees C. The antioxidant behavior of degraded p(TA) particles from p(HEMA) cryogel were found as 46 +/- 1 mu g mL(-1) gallic acid equivalent and 165 +/- 18 mM trolox equivalent g(-1). The p(TA) particle-embedded p(HEMA) cryogel has high hemocompatibility with 0.0158 +/- 0.0126% hemolysis ratio, and effective hemostatic properties with 8.1 +/- 0.9 blood clotting index. (C) 2016 Elsevier B.V. All rights reserved.Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [113Z238]; Canakkale Onsekiz Mart UniversityCanakkale Onsekiz Mart University [TSA-2014-362]This work is supported by the Scientific and Technological Research Council of Turkey (113Z238). Also, financial support from Canakkale Onsekiz Mart University, TSA-2014-362 is greatly appreciated
    corecore