5 research outputs found

    On electroweak baryogenesis in the littlest Higgs model with T parity

    Full text link
    We study electroweak baryogenesis within the framework of the littlest Higgs model with T parity. This model has shown characteristics of a strong first-order electroweak phase transition, which is conducive to baryogenesis in the early Universe. In the T parity symmetric theory, there are two gauge sectors, viz., the T-even and the T-odd ones. We observe that the effect of the T-parity symmetric interactions between the T-odd and the T-even gauge bosons on gauge-higgs energy functional is quite small, so that these two sectors can be taken to be independent. The T-even gauge bosons behave like the Standard Model gauge bosons, whereas the T-odd ones are instrumental in stabilizing the Higgs mass. For the T-odd gauge bosons in the symmetric and asymmetric phases and for the T-even gauge bosons in the asymmetric phase, we obtain, using the formalism of Arnold and McLerran, very small values of the ratio, (Baryon number violation rate/Universe expansion rate). We observe that this result, in conjunction with the scenario of inverse phase transition in the present work and the value of the ratio obtained from the lattice result of sphaleron transition rate in the symmetric phase, can provide us with a plausible baryogenesis scenario.Comment: 13 pages, 2 figures, published version, references modifie

    On the gauge and BRST invariance of the chiral QED with Faddeevian anomaly

    Full text link
    Chiral Schwinger model with the Faddeevian anomaly is considered. It is found that imposing a chiral constraint this model can be expressed in terms of chiral boson. The model when expressed in terms of chiral boson remains anomalous and the Gauss law of which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST quantization is possible. The Wess-Zumino term corresponding to this theory appears automatically during the process of quantization. A gauge invariant reformulation of this model is also constructed. Unlike the former one gauge invariance is done here without any extension of phase space. This gauge invariant version maps onto the vector Schwinger model.The gauge invariant version of the chiral Schwinger model for a=2a=2 has a massive field with identical mass however gauge invariant version obtained here does not map on to that.Comment: 11 pages latex, no figures, A little change in Title and abstrac

    Study of Einstein-bumblebee gravity with Kerr-Sen-like solution in the presence of a dispersive medium

    No full text
    A Kerr-Sen-like black hole solution appears in the Einstein-bumblebee theory of gravity. The solution contains contains a Lorentz violating parameter in an explicit manner. We study the null geodesics in the background of this Kerr-Sen-like black hole surrounded by a dispersive medium like plasma. We investigate the effect of the charge of the black hole, the Lorentz violation parameter, and the plasma parameter on the photon orbits with the evaluation of the effective potential in the presence of both the Lorentz violation parameter and the plasma parameter. We also study the influence of the Lorentz violation parameter and plasma parameter on the emission of energy from the black hole due to thermal radiation. Besides, we compute the angle of deflection of massless particles with weak-field approximation in this generalized situation and examine how it varies with the Lorentz violation parameter in presence of plasma. Constraining the parameters of this Lorentz violating Kerr-Sen-like black hole is also attempted here with the result obtained from the observations of the Event Horizon Telescope (EHT) collaboration
    corecore