68 research outputs found

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged

    Experimental Investigation of Spray-Deposited Fe-Doped ZnO Nanoparticle Thin Films: Structural, Microstructural, and Optical Properties

    No full text
    Structural, microstructural, and optical properties of the undoped and Fe-doped zinc oxide (ZnO) thin films grown by spray pyrolysis technique using zinc nitrate as a host precursor have been reported here. X-ray diffraction spectra confirm that all the films have stable wurtzite structure and the effects of Fe dopants on the diffraction patterns have been found to be in agreement with the Vegard's law. Scanning electron microscopy results show good uniformity and dense surface having spherical-shaped grains. Energy dispersive x-ray analyses with elemental mapping of the Fe-doped films show that the Fe dopants are incorporated homogeneously into the ZnO film matrix. The x-ray photoelectron spectroscopy spectra confirm the presence of 3+ oxidation state of Fe in the doped films. Atomic force microscopy analyses clearly show that the average surface roughness and the grain size decrease with the addition of Fe dopants. Optical studies reveal that the optical band gap value decreases on Fe doping. The 1 at.% Fe-doped film shows normal dispersion for the wavelength range 450-700 nm. The PL spectra of the films show a strong ultraviolet emission centered at similar to 388 nm in the case of 1 at.% Fe-doped film. A slow photo current response in the films has been observed in the transient photoconductivity measurement

    Spray-Deposited Nanocrystalline WO3 Thin Films Prepared Using Tungsten Hexachloride Dissolved in N-N Dimethylformamide and Influence of In Doping on Their Structural, Optical and Electrical Properties

    No full text
    Undoped and In-doped nanocrystalline tungsten oxide (WO3) thin films were prepared by chemical spray pyrolysis using tungsten hexachloride (WCl6) dissolved in N-N dimethylformamide as the host precursor solution and indium chloride (InCl3) as the source of dopant. XRD analyses confirm the monoclinic phase of the prepared films with the predominance of triplet (002), (020) and (200) in the spectra. On indium doping, the crystallinity of the films decreases and becomes minimum at 1.5 at. % doping. EDX analyses confirm the incorporation of In dopants into the WO3 lattice network. SEM micrographs show non- spherical grains over the surface and the average grain size decreases with higher In doping. AFM images of the films exhibit large nicely separated conical columnar grains (except in 1 at. %) throughout the surface with coalescence of some columnar grains at few places. UV-visible measurements reveal that the optical transmittance of the 1 at. % In-doped film increases significantly throughout the wavelength range 300 - 800 nm relative to that of the undoped film Room temperature photoluminescence spectra show pronounced enhancement in the peak intensity of NBE emission on In doping. Electrical conductivity has been found to increase on In doping

    Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping

    No full text
    The acetone sensors based on In-doped WO3 nanostructures have been investigated for different operating temperatures and test gas concentrations. The sensor based on 1.5 at% In-doped WO3 nanostructure shows maximum response (similar to 93%) at the operating temperature of 250 degrees C for 50 ppm concentration of acetone vapor in air, and also exhibits fast response/recovery time. The XRD results confirm the monoclinic phase of the as-prepared WO3 nanostructures. TEM images reveal that there is an enhancement in the particle size upon indium doping, relative to the undoped WO3. The SEM images exhibit different surface morphology, whereas the EDX spectra confirm the presence of indium ions into the WO3 lattice. Raman spectroscopy studies also confirm the monoclinic structure of the undoped and In-doped WO3 samples. (C) 2014 Elsevier B.V. All rights reserved

    Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films

    No full text
    Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20-28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (similar to 94.5 %) at the operating temperature of 275 A degrees C for 100 ppm concentration of formaldehyde, which is much higher than the response (similar to 35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules

    Spray-Deposited Nanocrystalline WO3 Thin Films Prepared Using Tungsten Hexachloride Dissolved in N-N Dimethylformamide and Influence of In Doping on Their Structural, Optical and Electrical Properties

    No full text
    Undoped and In-doped nanocrystalline tungsten oxide (WO3) thin films were prepared by chemical spray pyrolysis using tungsten hexachloride (WCl6) dissolved in N-N dimethylformamide as the host precursor solution and indium chloride (InCl3) as the source of dopant. XRD analyses confirm the monoclinic phase of the prepared films with the predominance of triplet (002), (020) and (200) in the spectra. On indium doping, the crystallinity of the films decreases and becomes minimum at 1.5 at. % doping. EDX analyses confirm the incorporation of In dopants into the WO3 lattice network. SEM micrographs show non- spherical grains over the surface and the average grain size decreases with higher In doping. AFM images of the films exhibit large nicely separated conical columnar grains (except in 1 at. %) throughout the surface with coalescence of some columnar grains at few places. UV-visible measurements reveal that the optical transmittance of the 1 at. % In-doped film increases significantly throughout the wavelength range 300 - 800 nm relative to that of the undoped film Room temperature photoluminescence spectra show pronounced enhancement in the peak intensity of NBE emission on In doping. Electrical conductivity has been found to increase on In doping

    Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles

    No full text
    In this paper we report Cu doping induced modifications in the structural, photoluminescence and gas sensing behaviour of SnO2 nanoparticles. Our results show that crystallinity is reduced upon Cu doping. The PL emissions observed in the visible region are attributed to the defect levels arising due to oxygen vacancies. The 1.5 at% Cu-doped SnO2 shows the selective high response (similar to 80%) to 50 ppm concentration of formaldehyde over methanol, ethanol, propanol-2-ol, acetone and n-butylacetate at 200 degrees C. The sensing mechanism has been explained based on chemisorption of oxygen on the SnO2 surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules

    Tin-Incorporation Induced Changes in the Microstructural, Optical, and Electrical Behavior of Tungsten Oxide Nanocrystalline Thin Films Grown Via Spray Pyrolysis

    No full text
    Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping
    corecore