5 research outputs found

    Production of the probiotic dessert containing sprouted quinoa milk and evaluation of physicochemical and microbial properties during storage

    No full text
    Abstract One of the challenges of the food industry is detecting the potential of novel non‐dairy food matrices to deliver probiotic bacteria to humans as cholesterol‐free products, suitable for people with lactose intolerance and sensitivity to dairy proteins. In this study, the possibility of adding sprouted quinoa milk (SQM) at 0%, 50%, and 100% levels in probiotic non‐dairy dessert containing native Lactobacillus plantarum isolated from camel milk was investigated. Physicochemical, functional, microbiological, color, texture, and organoleptic characteristics of probiotic dessert samples were evaluated during 1, 7, and 14 days of storage at 4°C. According to the results, fat, protein, carbohydrates, and ash increased significantly during germination (p < .05). With boosting the SQM levels in the probiotic desserts, the number of soluble solids increased, and the syneresis decreased significantly (p < .05). The simultaneous increase in SQM levels and time caused an increase in acidity and decreased the moisture content of the samples. As the storage time increased, the intensity of the syneresis also decreased. The brightness index in all samples containing SQM was lower than in the control sample. During storage, the viable cell number of Lactobacillus plantarum in all samples decreased significantly. However, they were above the minimum required for FDA recommendation (6 log CFU g−1), varying from 4.6 × 108 CFU/mL to 4.3 × 107 CFU/mL for 50% SQM treatment. It was concluded that probiotic desserts containing SQM up to 50% could be properly presented in the market as gluten‐free and functional food products

    Evaluation of the bioprotectivity of Lactobacillus binary/ternary cultures in yogurt

    No full text
    The attempts toward addition of biocontrol agents in dairy products have gained popularity. Here, we worked on analysing the antifungal activity of binary and ternary combinations of three Lactic Acid Bacteria (LAB) against five spoilage yeasts in yogurt. The yogurt samples were characterized in terms of pH, acidity, WHC, textural parameters, viscosity, survivability and antifungal activity of LAB and sensorial properties during cold storage. The results showed that the inoculation of LAB in yogurt gave rise in significant reduction of pH throughout cold storage while titrable acidity and WHC decreased (p &lt; .05). Inoculation of LAB resulted in significant increase in hardness and adhesiveness while springiness remained constant. On the other hand, apparent viscosity of all samples experienced a profound increase up to the 10th day of storage followed by a reduction trend for the rest of storage period. Analysis of inhibitory activity of LAB showed an efficient barrier against all five yeasts, in which the most activity was recorded for Lactobacillus reuteri followed by Lactobacillus acidophilus. On the other hand, the most resistance yeast was Kluyveromyces marxianus followed by Rhodotorula mucilaginosa. Sensorial analysis revealed that addition of LAB in yogurt brought about a profound improvement in textural quality of samples. Inoculation of LAB cultures in yogurt at 5% (v/v) not only could improve the physicochemical and sensorial properties of yogurt, but also could introduce a strategy toward substituting of chemical preservatives with biocontrol agents
    corecore