2 research outputs found

    Serum Metabolomic Analysis of Male Patients with Cannabis or Amphetamine Use Disorder

    No full text
    Studies have demonstrated that chronic consumption of abused drugs induces alterations in several proteins that regulate metabolism. For instance, methamphetamine exposure reduces glucose levels. Fatty and amino acid levels were altered in groups exposed to abused drugs. Therefore, in our study, we investigated the serum metabolomic profile of patients diagnosed with cannabis and/or amphetamine use disorders. Blood was obtained from subjects (control, amphetamine, and cannabis). Detection of serum metabolites was performed using gas chromatography. The ratio peak areas for metabolites were analyzed across the three groups. Both cannabis and amphetamine groups showed higher d-erythrotetrafuranose, octadecanoic acid, hexadecenoic acid, trans-9-octadecanoic acid, lactic acid and methyl thio hydantoin metabolites compared with the control group. Moreover, cannabis patients were found to possess higher glycine, 9,12 octadecanoic acid malonic acid, phosphoric acid and prostaglandin F1a than controls. Our analysis showed that the identified metabolic profile of cannabis or amphetamine use disorder patients was different than control group. Our data indicated that chronic exposure to cannabis or amphetamine dysregulated metabolites in the serum. Future studies are warranted to explore the effects of these abused drugs on the metabolic proteins

    Liver Metabolomics and Inflammatory Profiles in Mouse Model of Fentanyl Overdose Treated with Beta-Lactams

    No full text
    Fentanyl is a highly potent opioid analgesic that is approved medically to treat acute and chronic pain. There is a high potential for overdose-induced organ toxicities, including liver toxicity, and this might be due to the increase of recreational use of opioids. Several preclinical studies have demonstrated the efficacy of beta-lactams in modulating the expression of glutamate transporter-1 (GLT-1) in different body organs, including the liver. The upregulation of GLT-1 by beta-lactams is associated with the attenuation of hyperglutamatergic state, which is a characteristic feature of opioid use disorders. A novel experimental beta-lactam compound with no antimicrobial properties, MC-100093, has been developed to attenuate dysregulation of glutamate transport, in part by normalizing GLT-1 expression. A previous study showed that MC-100093 modulated hepatic GLT-1 expression with subsequent attenuation of alcohol-increased fat droplet content in the liver. In this study, we investigated the effects of fentanyl overdose on liver metabolites, and determined the effects of MC-100093 and ceftriaxone in the liver of a fentanyl overdose mouse model. Liver samples from control, fentanyl overdose, and fentanyl overdose ceftriaxone- or MC-100093-treated mice were analyzed for metabolomics using gas chromatography–mass spectrometry. Heatmap analysis revealed that both MC-100093 and ceftriaxone attenuated the effects of fentanyl overdose on several metabolites, and MC-100093 showed superior effects. Statistical analysis showed that MC-100093 reversed the effects of fentanyl overdose in some metabolites. Moreover, enrichment analysis revealed that the altered metabolites were strongly linked to the glucose-alanine cycle, the Warburg effect, gluconeogenesis, glutamate metabolism, lactose degradation, and ketone body metabolism. The changes in liver metabolites induced by fentanyl overdose were associated with liver inflammation, an effect attenuated with ceftriaxone pre-treatments. Ceftriaxone normalized fentanyl-overdose-induced changes in liver interleukin-6 and cytochrome CYP3A11 (mouse homolog of human CYP3A4) expression. Our data indicate that fentanyl overdose impaired liver metabolites, and MC-100093 restored certain metabolites
    corecore