4 research outputs found

    Negative Thermal Expansion Near the Precipice of Structural Stability in Open Perovskites

    Get PDF
    Negative thermal expansion (NTE) describes the anomalous propensity of materials to shrink when heated. Since its discovery, the NTE effect has been found in a wide variety of materials with an array of magnetic, electronic and structural properties. In some cases, the NTE originates from phase competition arising from the electronic or magnetic degrees of freedom but we here focus on a particular class of NTE which originates from intrinsic dynamical origins related to the lattice degrees of freedom, a property we term structural negative thermal expansion (SNTE). Here we review some select cases of NTE which strictly arise from anharmonic phonon dynamics, with a focus on open perovskite lattices. We find that NTE is often present close in proximity to competing structural phases, with structural phase transition lines terminating near T=0 K yielding the most prominent displays of the SNTE effect. We further provide a theoretical model to make precise the proposed relationship among the signature behavior of SNTE, the proximity of these systems to structural quantum phase transitions and the effects of phase fluctuations near these unique regions of the structural phase diagram. The effects of compositional disorder on NTE and structural phase stability in perovskites are discussed

    Large isotropic negative thermal expansion above a structural quantum phase transition

    Get PDF
    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom, which makes these systems interesting. Here, we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3, and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic x-ray scattering as well as x-ray diffraction reveal that soft mode, central peak, and thermal expansion phenomena are all strongly influenced by the transition.National Science Foundation Award No. DMR-1506825US Department of Energy, Office of Basic Energy Sciences under Contract No. DE- AC02-06CH11357Yale Prize Postdoctoral FellowshipNSF Grant No. DMR-0115852Universidad de Costa Rica. Vicerrectoría de Investigación Projecto No. 816-B5-220UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA

    Influence of Sound Source Location on the Behavior and Physiology of the Precedence Effect in Cats

    Full text link
    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from ∼0.4 to 10 ms, summing localization for |ISDs| < 0.4 ms and breakdown of fusion for |ISDs| > 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space
    corecore