22,382 research outputs found

    Speckle interferometry

    Get PDF
    We have presented the basic mathematical treatment of interferometry in the optical domain. Its applications in astronomical observations using both the single aperture, as well as the diluted apertures are described in detail. We have also described about the shortcomings of this technique in the presence of Earth's atmosphere. A short descriptions of the atmospheric turbulence and its effect on the flat wavefront from a stellar source is given. The formation of speckle which acts as carrier of information is defined. Laboratory experiments with phase modulation screens, as well as the resultant intensity distributions due to point source are demonstrated. The experimental method to freeze the speckles, as well as data processing techniques for both Fourier modulus and Fourier phase are described. We have also discussed the technique of the aperture synthesis using non-redundant aperture masks at the pupil plane of the telescope, emphasizing set on the comparison with speckle interferometry. The various methods of image restoration and their comparisons are also discussed. Finally, we have touched upon certain astrophysical problems which can be tackled with the newly developed speckle interferometer using the 2.34 meter Vainu Bappu Telescope (VBT), situated at the Vainu Bappu Observatory (VBO), Kavalur, India.Comment: 32 pages tex files including figure

    Resonance State Wave Functions of 15^{15}Be using Supersymmetric Quantum Mechanics

    Full text link
    The theoretical procedure of supersymmetric quantum mechanics is adopted to generate the resonance state wave functions of the unbound nucleus 15^{15}Be. In this framework, we used a density dependent M3Y microscopic potential and arrived at the energy and width of the 1.8 MeV (5/2+^+) resonance state. We did not find any other nearby resonances for 15^{15}Be. It becomes apparent that the present framework is a powerful tool to theoretically complement the increasingly important accelerator based experiments with unbound nuclei.Comment: 5 pages, 4 figures, Phys. Lett. B (2017

    Control of a Circular Jet

    Full text link
    The present study report direct numerical simulation (DNS) of a circular jet and the effect of a large scale perturbation at the jet inlet. The perturbation is used to control the jet for increased spreading. Dual-mode perturbation is obtained by combining an axisymmetric excitation with the helical. In the fluid dynamics videos, an active control of the circular jet at a Reynolds number of 2000 for various frequency ratios (both integer and non-integer) has been demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on a plane is evident. However, for a non-integer frequency ratio, the axisymmetric jet is seen to bloom in all directions.Comment: 2 page
    corecore