11 research outputs found

    Refractance Window and Conduction Dryings of Mango Pulp

    No full text
    Mango pulp (2 mm thickness) was dried by Refractance Window (RW) technique using Mylar sheet with water bath temperature fixed at 95 °C and the product temperature varying with time to obtain a popular Indian intermediate moisture product known as mango leather (pestil) through good manufacturing practice.  Conduction drying was the major mode for drying of mango pulp on Aluminium sheet and foil.  Drying kinetics, water activity and color change were determined and the results were compared between mango pulp dried on Mylar sheet (MS), Aluminium sheet (AS) and Aluminium foil (AF), all placed on the top surface of hot water. The recommended moisture content for intermediate moisture food like mango leather, which is 18-33% dry basis (db) was achieved within 12 minutes using RW dryer with Mylar and for conduction drying on Aluminium sheets and Aluminium foil the duration was only 10 minutes. A final moisture content of 2.5% (db) was achieved in RW drying after 35 minutes of drying for both sheets and foil, as well.  After 25 minutes of drying, water activity of the product was 0.4 with corresponding equilibrium moisture content (EMC) value of 0.25 kg water/kg dry matter at 30.2ºC. The maximum moisture diffusivity of RW dried sample on Mylar sheet was (9 ± 2) × 10 -9 m2 s -1. The same values for drying on the Aluminium sheet and foil were (1.05 ± 0.25) ⤫ 10 -8 m2 s -1 and (1.2 ± 0.4) ⤫ 10 -8 m2 s -1, respectively.  Measurement of colour values L*, a* and b* revealed that around 20 minutes time there is a distinct break in the ∆L*, ∆a* and ∆b*values indicating the pulp layer going through darkening to reach mango leather properties.

    Chemical contamination-mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination mediated regime shifts in planktonic systems

    Get PDF
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton-zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination-mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination-mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination-mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination-mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton–zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal-dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination

    Chemical contamination mediated regime shifts in planktonic systems

    No full text
    Abrupt transitions leading to algal blooms are quite well known in aquatic ecosystems and have important implications for the environment. These ecosystem shifts have been largely attributed to nutrient dynamics and food web interactions. Contamination with heavy metals such as copper can modulate such ecological interactions which in turn may impact ecosystem functioning. Motivated by this, we explored the effect of copper enrichment on such regime shifts in planktonic systems. We integrated copper contamination to a minimal phytoplankton-zooplankton model which is known to demonstrate abrupt transitions between ecosystem states. Our results suggest that both the toxic and deficient concentration of copper in water bodies can lead to regime shift to an algal dominated alternative stable state. Further, interaction with fish density can also lead to collapse of population cycles thus leading to algal domination in the intermediate copper ranges. Environmental stochasticity may result in state transition much prior to the tipping point and there is a significant loss in the bimodality on increasing intensity and redness of noise. Finally, the impending state shifts due to contamination cannot be predicted by the generic early warning indicators unless the transition is close enough. Overall the study provides fresh impetus to explore regime shifts in ecosystems under the influence of anthropogenic changes like chemical contamination
    corecore