227 research outputs found
Pharmacokinetic study on pradofloxacin in the dog â Comparison of serum analysis, ultrafiltration and tissue sampling after oral administration
Background: Pradofloxacin, a newly developed 8-cyano-fluoroquinolone, show enhanced activity against Grampositive organisms and anaerobes to treat canine and feline bacterial infections. The purpose of this cross-over study was to measure the unbound drug concentration of pradofloxacin in the interstitial fluid (ISF) using ultrafiltration and to compare the kinetics of pradofloxacin in serum, ISF and tissue using enrofloxacin as reference.
Results: After oral administration of enrofloxacin (5 mg/kg) and pradofloxacin (3 mg/kg and 6 mg/kg, respectively), serum collection and ultrafiltration in regular intervals over a period of 24 h were performed, followed by tissue sampling at the end of the third dosing protocol (pradofloxacin 6 mg/kg). Peak concentrations of pradofloxacin (3 mg/kg) were 1.55±0.31 Όg/ml in the ISF and 1.85±0.23 Όg/ml in serum and for pradofloxacin (6 mg/kg) 2.71±0.81 Όg/kg in the ISF and 2.77±0.64 Όg/kg in serum; both without a statistical difference between ISF and serum. Comparison between all sampling approaches showed no consistent pattern of statistical differences.
Conclusions: Despite some technical shortcomings the ultrafiltration approach appears to be the most sensitive sampling technique to estimate pharmacokinetic values of pradofloxacin at the infection site. Pharmacokinetics â Pradofloxacin â Ultrafiltration â Dog â Oral Administration
Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific
A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.
Key Points
- Fe-Mn crusts can have a diagenetic component
- Mid-latitude N. Pacific deep-water Fe-Mn crusts are uniquely enriched in Cu, Th, Li
- Temporal changes in deep-ocean geochemical processes are recorde
Development of quality indicators for monitoring outcomes of frail elderly hospitalised in acute care health settings: Study Protocol
Background: Frail older people admitted to acute care hospitals are at risk of a range of adverse outcomes, including geriatric syndromes, although targeted care strategies can improve health outcomes for these patients. It is therefore important to assess inter-hospital variation in performance in order to plan and resource improvement programs. Clinical quality outcome indicators provide a mechanism for identifying variation in performance over time and between hospitals, however to date there has been no routine use of such indicators in acute care settings. A barrier to using quality indicators is lack of access to routinely collected clinical data. The interRAI Acute Care (AC) assessment system supports comprehensive geriatric assessment of older people within routine daily practice in hospital and includes process and outcome data pertaining to geriatric syndromes. This paper reports the study protocol for the development of aged care quality indicators for acute care hospitals. Methods/Design. The study will be conducted in three phases:. 1. Development of a preliminary inclusive set of quality indicators set based on a literature review and expert panel consultation,. 2. A prospective field study including recruitment of 480 patients aged 70 years or older across 9 Australian hospitals. Each patient will be assessed on admission and discharge using the interRAI AC, and will undergo daily monitoring to observe outcomes. Medical records will be independently audited, and. 3. Analysis and compilation of a definitive quality indicator set, including two anonymous voting rounds for quality indicator inclusion by the expert panel. Discussion. The approach to quality indicators proposed in this protocol has four distinct advantages over previous efforts: the quality indicators focus on outcomes; they can be collected as part of a routinely applied clinical information and decision support system; the clinical data will be robust and will contribute to better understanding variations in hospital care of older patients; The quality indicators will have international relevance as they will be built on the interRAI assessment instrument, an internationally recognised clinical system
Differential effects of glucagon-like peptide-1 receptor agonists on heart rate
Abstract
While glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are known to increase heart rate (HR), it is insufficiently recognized that the extent varies greatly between the various agonists and is affected by the assessment methods employed. Here we review published data from 24-h time-averaged HR monitoring in healthy individuals and subjects with type 2 diabetes mellitus (T2DM) treated with either short-acting GLP-1 RAs, lixisenatide or exenatide, or long-acting GLP-1 RAs, exenatide LAR, liraglutide, albiglutide, or dulaglutide (N\ua0=\ua01112; active-treatment arms). HR effects observed in two independent head-to-head trials of lixisenatide and liraglutide (N\ua0=\ua0202; active-treatment arms) are also reviewed. Short-acting GLP-1 RAs, exenatide and lixisenatide, are associated with a transient (1\u201312\ua0h) mean placebo- and baseline-adjusted 24-h HR increase of 1\u20133\ua0beats per minute (bpm). Conversely, long-acting GLP-1 RAs are associated with more pronounced increases in mean 24-h HR; the highest seen with liraglutide and albiglutide at 6\u201310\ua0bpm compared with dulaglutide and exenatide LAR at 3\u20134\ua0bpm. For both liraglutide and dulaglutide, HR increases were recorded during both the day and at night. In two head-to-head comparisons, a small, transient mean increase in HR from baseline was observed with lixisenatide; liraglutide induced a substantially greater increase that remained significantly elevated over 24\ua0h. The underlying mechanism for increased HR remains to be elucidated; however, it could be related to a direct effect at the sinus node and/or stimulation of the sympathetic nervous system, with this effect related to the duration of action of the respective GLP-1 RAs. In conclusion, this review indicates that the effects on HR differ within the class of GLP-1 RAs: short-acting GLP-1 RAs are associated with a modest and transient HR increase before returning to baseline levels, while some long-acting GLP-1 RAs are associated with a more pronounced and sustained increase during the day and night. Findings from recently completed trials indicate that a GLP-1 RA-induced increase in HR, regardless of magnitude, does not present an increased cardiovascular risk for subjects with T2DM, although a pronounced increase in HR may be associated with adverse clinical outcomes in those with advanced heart failure
Optimal Control of Nonlinear Switched Systems: Computational Methods and Applications
A switched system is a dynamic system that operates by switching between different subsystems or modes. Such systems exhibit both continuous and discrete characteristicsâa dual nature that makes designing effective control policies a challenging task. The purpose of this paper is to review some of the latest computational techniques for generating optimal control laws for switched systems with nonlinear dynamics and continuous inequality constraints. We discuss computational strategiesfor optimizing both the times at which a switched system switches from one mode to another (the so-called switching times) and the sequence in which a switched system operates its various possible modes (the so-called switching sequence). These strategies involve novel combinations of the control parameterization method, the timescaling transformation, and bilevel programming and binary relaxation techniques. We conclude the paper by discussing a number of switched system optimal control models arising in practical applications
Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans
Background: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood.
Results: Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with
studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are
no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction.
Conclusion: Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food
sensing
Scenario-driven roadmapping for technology foresight
This paper presents a novel method for using scenarios for technology foresight. Technology foresight is a well-established discipline, practised with popular foresight methods such as roadmapping and scenario planning. Applying each foresight method reveals limitations in practice, some of which can be addressed by combining methods. Following calls for combining foresight methods, and past attempts to integrate scenario planning and technology roadmapping, we propose a novel method for their combination. The resulting method â âscenario-driven roadmappingâ differs in: i) using scenario planning first to identify plausible images of the general environment and then using the scenarios for technology roadmapping; and ii) taking advantage of âflex pointsâ â critical developments which would signal transitions along particular pathways â to create a âradarâ to support effective monitoring of the environment over time. This new combined method takes advantage of the strengths of both methods, while addressing their limitations. A case study vignette centred on the work of a special interest group for Radio Frequency IDentification (RFID) technology adoption in the English National Health Service is presented to illustrate and reflect upon the use in practice of the âscenario-driven roadmappingâ method. Participants were able to develop a detailed technology roadmap with clear âflex pointsâ helping to connect present circumstances with pathways towards future scenarios. We report on how participants engaged with the scenario-driven method and outcomes achieved were recorded
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe
Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.
Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies
- âŠ