96 research outputs found

    Temperature dependence of microbial degradation of organic matter in marine sediments:polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    Get PDF
    The temperature dependence of representative initial and terminal steps of organic carbon remineralization was measured at 2 temperate sites with annual temperature ranges of 0 to 30 degrees C and 4 to 15 degrees C and 2 Arctic sites with temperatures of 2.6 and -1.7 degrees C. Slurried sediments were incubated in a temperature gradient block spanning a temperature range of ca 45 degrees C. The initial step of organic carbon remineralization, macromolecule hydrolysis, was measured via the enzymatic hydrolysis of fluorescently labeled polysaccharides. The terminal steps of organic carbon remineralization were monitored through consumption of oxygen and reduction of (SO42-)-S-35. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental temperatures, optimum temperatures generally decreased with decreasing environmental temperatures. Activity at 5 degrees C as a percentage of highest activity was highest in the Arctic sites and lowest in the warmest temperate site. The highest potential rates of substrate hydrolysis were measured in the Arctic, while the highest rates of oxygen consumption and sulfate reduction were measured at the warmest temperate site. Potential rates of extracellular enzymatic hydrolysis (at least for this class of pullulanase enzymes) do not appear to Limit organic carbon turnover in the Arctic. These results suggest that organic carbon turnover in the cold Arctic is not intrinsically slower than carbon turnover in temperate environments; sedimentary metabolism in Arctic sediments may be controlled more by organic matter supply than by temperature

    Temperature dependence of microbial degradation of organic matter in marine sediments:polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    Get PDF
    The temperature dependence of representative initial and terminal steps of organic carbon remineralization was measured at 2 temperate sites with annual temperature ranges of 0 to 30°C and 4 to 15°C and 2 Arctic sites with temperatures of 2.6 and –1.7°C. Slurried sediments were incubated in a temperature gradient block spanning a temperature range of ca 45°C. The initial step of organic carbon remineralization, macromolecule hydrolysis, was measured via the enzymatic hydrolysis of fluorescently labeled polysaccharides. The terminal steps of organic carbon remineralization were monitored through consumption of oxygen and reduction of 35SO42–. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental temperatures, optimum temperatures generally decreased with decreasing environmental temperatures. Activity at 5°C as a percentage of highest activity was highest in the Arctic sites and lowest in the warmest temperate site. The highest potential rates of substrate hydrolysis were measured in the Arctic, while the highest rates of oxygen consumption and sulfate reduction were measured at the warmest temperate site. Potential rates of extracellular enzymatic hydrolysis (at least for this class of pullulanase enzymes) do not appear to limit organic carbon turnover in the Arctic. These results suggest that organic carbon turnover in the cold Arctic is not intrinsically slower than carbon turnover in temperate environments; sedimentary metabolism in Arctic sediments may be controlled more by organic matter supply than by temperature

    Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    Full text link
    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid

    Onychophoran-like myoanatomy of the Cambrian gilled lobopodian <i>Pambdelurion whittingtoni</i>

    Get PDF
    Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever-like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft-bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally-preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft-bodied stem-arthropod Pambdelurion whittingtoni and the hard-bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units
    corecore