11 research outputs found

    Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline

    Get PDF
    Background: Alzheimer's disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) A f42 (A) and tau (T) ratio. Methods: As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. Results: Mean age (\ub1 standard deviation) in the CH-PAT group (n = 27; 75.2 \ub1 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 \ub1 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) \u3bcm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. Conclusions: Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology

    Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) — a medicinal plant

    No full text
    An efficient method has been developed for regeneration of complete plants via somatic embryogenesis in Corydalis yanhusuo (Fumariaceae), an important medicinal plant, using tuber-derived callus. Primary callus was induced by culturing mature tuber pieces on Murashige and Skoog's (MS) medium supplemented with 2.0 mg l−1N6-benzyladenine (BA) and 0.5 mg l−1 α-naphthaleneacetic acid (NAA) in darkness. Somatic embryos were induced by subculturing the primary callus on MS medium supplemented with 0.5–4.0 mg l−1 BA, kinetin, or zeatin, within 2 weeks of culture in light. Embryos with well-developed cotyledonary leaves were transferred in half-strength liquid MS medium supplemented with 1.0 mg l−1 zeatin riboside for the development of roots. Converted somatic embryos were cultured on half-strength MS medium supplemented with 6% sucrose, and with 0.5–10.0 mg l−1 abscisic acid (ABA), paclobutrazol, or ancymidol, 0.5–5.0 mg l−1 GA3 and 15–100 mg l−1 polyethylene glycol (PEG) 4000 for further development of plantlets and in vitro tuber formation. The development of somatic embryos over the surface of tuber and/or cotyledonary leaf base region of the converted primary somatic embryo was observed. Before ex vitro establishment of somatic embryo-derived plants, plants with well-developed tubers were cultured on half-strength MS medium with 2% sucrose and 0.1 mg l−1 GA3 for 3 weeks

    Vascular dysfunction-The disregarded partner of Alzheimer's disease

    No full text
    Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts. (C) 2018 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.Neuro Imaging Researc

    AplicaçÔes da cultura de tecidos em plantas medicinais

    No full text

    Involvement of Plant Hormones and Plant Growth Regulators on in vitro Somatic Embryogenesis

    No full text
    In spite of the importance attained by somatic embryogenesis and of the many studies that have been conducted on this developmental process, there are still many aspects that are not fully understood. Among those features, the involvement of plant hormones and plant growth regulators on deTermining the conversion of somatic onto embryogenic tissues, and on allowing progression and maturation of somatic embryos, are far away from being completely comprehended. Part of these difficulties relies on the frequent appearance of contradictory results when studying the effect of a particular stimulus over a specific stage in somatic embryogenesis. Recent progress achieved on understanding the interaction between exogenously added plant growth regulators over the concentration of endogenous hormones, together with the involvement of sensitivity of the tissues to particular hormone groups, might help clarifying the occurrence of divergent patterns in somatic embryogenesis, and in tissue culture in general. The aspects described above, emphasizing on the effect of the concentration of plant hormones and of the addition of plant growth regulators during the different phases of somatic embryogenesis, will be reviewed in this paper. Citations will be limited to review articles as much as possible and to individual articles only in those cases in which very specific or recent information is presented.UCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias Agroalimentarias::Centro para Investigaciones en Granos y Semillas (CIGRAS
    corecore