8 research outputs found

    Forskolin Modulate Silent Information Regulator 1 (SIRT1) gene Expression and Halts Experimentally-Induced Acute Kidney Injury

    No full text
    Acute kidney injury is a very serious medical condition; change of the normal physiological oxidant-antioxidant balance has been reported as a major cause for renal injury. Silent information regulator 1 (Sirt1) is a nicotinamide adenine dinucleotide- (NAD+-) dependent deacetylase that has nephro-protective effect against ischemia or injury by toxic substances by increasing cell resistance to oxidative stress. Forskolin is derived from plant Coleus forskohlii and has been used to treat the heart disease, hypertension, diabetes and asthma. This study was done to investigate the possible protective role of forskolin against glycerol- induced acute nephrotoxicity and also to study the possible mechanisms underlying this action. In the present study rats were randomly divided into four groups. Rats in the control group received distilled water orally for 15 days, four days before scarification they received half the dose of saline (10 ml/kg) in each hind limb muscle; rats in the FSK group received 500 mg/kg per day, orally for 15 days; those in the glycerol group (AKI) received half the dose of glycerol (10 ml/kg, 50% v/v in sterile saline) in each hind limb muscle; rats in the FSK + glycerol (AKI) group received FSK 500 mg/kg per day, orally 12 days before glycerol injection and continued for three days after glycerol administration with a total period of 15 days, all rats were deprived of water for 24 h before glycerol injection. Parameters tested in this study were kidney function tests (urea, creatinine), oxidative stress parameters (MDA, GST), anti-inflammatory marker (TNF-α), anti-apoptotic marker (caspase-3), SIRT gene expression detected by RT-PCR and histopathlogical study. Results: Glycerol administration caused significant increase in all tested parameters except SIRT gene expression which decreased with glycerol administration. Pretreatment with forskolin caused significant decrease of levels of urea, creatinine, MDA, TNF-α and also decreased activity of caspase-3 and GST, with significant improvement of SIRT expression. Histopathological examination revealed that the glycerol caused severe kidney damage in the form of hemorrhage, inflammatory cell infiltration and intra-tubular cast formation compared to normal renal histology and architecture of the control and forskolin groups. Forskolin pretreatment of glycerol induced AKI caused marked improvement of histological picture which exhibited mild edema and tubular vacuolization compared to the control group. In conclusion the possible beneficial effect of forskolin in protection against nephrotoxicity is due to its ability to modulate the disrupted expression of SIRT gene as well as its anti-oxidant, anti-inflammatory and anti-apoptotic properties. This may open a new therapeutic window for renal patient

    Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway

    No full text
    Background: Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and a common cause of end-stage renal disease. Autophagy has a defensive role against kidney damage caused by hyperglycemia. Mesenchymal stem cell (MSC)-derived exosomes are currently considered as a new promising therapy for chronic renal injury. However, the renal-protective mechanism of exosomes on DN is not completely understood. We examined the potential role of MSC-derived exosomes for enhancement of autophagy activity and their effect on DN. In our study, we used five groups of rats: control; DN; DN treated with exosomes; DN treated with 3-methyladenine (3-MA) and chloroquine (inhibitors of autophagy); and DN treated with 3-methyladenine (3-MA), chloroquine, and exosome groups. We assessed renal function, morphology, and fibrosis. Moreover, ratios of the autophagy markers mechanistic target of rapamycin (mTOR), Beclin-1, light chain-3 (LC3-II), and LC3-II/LC3-I were detected. Additionally, electron microscopy was used for detection of autophagosomes. Results: Exosomes markedly improved renal function and showed histological restoration of renal tissues, with significant increase of LC3 and Beclin-1, and significant decrease of mTOR and fibrotic marker expression in renal tissue. All previous effects were partially abolished by the autophagy inhibitors chloroquine and 3-MA. Conclusion: We conclude that autophagy induction by exosomes could attenuate DN in a rat model of streptozotocin-induced diabetes mellitus

    Adipose Tissue-Derived Mesenchymal Stem Cell Modulates the Immune Response of Allergic Rhinitis in a Rat Model

    No full text
    This study was designed to investigate the potential effects and underlying mechanism of adipose tissue-derived mesenchymal stem cells (MSCs) on allergic inflammation compared to Montelukast as an antileukotriene drug in a rat model of allergic rhinitis (AR). The effect of MSCs was evaluated in albino rats that were randomly divided into four (control, AR, AR + Montelukast, and AR + MSCs) groups. Rats of AR group were sensitized by ovalbumin (OVA) and then challenged with daily nasal drops of OVA diluted in sterile physiological saline (50 μL/nostril, 100 mg/mL, 10% OVA) from day 15 to day 21 of treatment with/without Montelukast (1 h before each challenge) or MSCs I/P injection (1 × 106 MCSs; weekly for three constitutive weeks). Both Montelukast and MSCs treatment started from day 15 of the experiment. At the end of the 5th week, blood samples were collected from all rats for immunological assays, histological, and molecular biology examinations. Both oral Montelukast and intraperitoneal injection of MSCs significantly reduced allergic symptoms and OVA-specific immunoglobulin E (IgE), IgG1, IgG2a and histamine as well as increasing prostaglandin E2 (PGE2). Further analysis revealed that induction of nasal innate cytokines, such as interleukin (IL)-4 and TNF-α; and chemokines, such as CCL11 and vascular cell adhesion molecule-1 (VCAM-1), were suppressed; and transforming growth factor-β (TGF-β) was up-regulated in Montelukast and MSCs-treated groups with superior effect to MSCs, which explained their underlying mechanism. In addition, the adipose tissue-derived MSCs-treated group had more restoring effects on nasal mucosa structure demonstrated by electron microscopical examination

    Tigecycline and Gentamicin-Combined Treatment Enhances Renal Damage: Oxidative Stress, Inflammatory Reaction, and Apoptosis Interplay

    No full text
    Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity

    Nootkatone Mitigated Melamine-Evoked Hepatotoxicity by Featuring Oxidative Stress and Inflammation Interconnected Mechanisms: In Vivo and In Silico Approaches

    No full text
    Melamine (ML) is a common environmental contaminant, commonly used in food fraud, representing a serious health hazard and jeopardizing human and animal health. Recently, nootkatone (NK), a naturally occurring sesquiterpenoid, has garnered considerable attention due to its potential therapeutic advantages. We investigated the potential mechanisms underlying the protective effects of NK against ML-induced liver injury in rats. Five groups were utilized: control, ML, NK10, ML-NK5, and ML-NK10. ML induced substantial hepatotoxicity, including considerable alterations in biochemical parameters and histology. The oxidative distress triggered by ML increased the generation of malondialdehyde (MDA) and nitric oxide (NO) and decreased levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. In addition, decreased expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased nuclear factor kappa beta (NF-κB) expression levels were observed in hepatocytes, which indicated the occurrence of inflammatory changes following ML exposure. These alterations were alleviated by NK supplementation in a dose-dependent manner. The data revealed that the favorable effects of NK were attributed, at least in part, to its antioxidant and anti-inflammatory properties. Moreover, our results were supported by molecular docking studies that revealed a good fit and interactions between NK and antioxidant enzymes. Thus, the current study demonstrated that NK is a potential new food additive for the prevention or treatment of ML-induced toxicity
    corecore