525 research outputs found

    Relativistic many-body calculations of the Stark-induced amplitude of the 6P1/2 -7P1/2 transition in thallium

    Full text link
    Stark-induced amplitudes for the 6P1/2 - 7P1/2 transition in Tl I are calculated using the relativistic SD approximation in which single and double excitations of Dirac-Hartree-Fock levels are summed to all orders in perturbation theory. Our SD values alpha S = 368 a0 3 and beta S= 298 a 0 3 are in good agreement with the measurements alpha S=377(8) a 0 3$ and beta S = 313(8) a 0 3 by D. DeMille, D. Budker, and E. D. Commins [Phys. Rev. A 50, 4657 (1994)]. Calculations of the Stark shifts in the 6P1/2 - 7P1/2 and 6P1/2 - 7S1/2 transitions are also carried out. The Stark shifts predicted by our calculations agree with the most accurate measured values within the experimental uncertainties for both transitions

    Blackbody radiation shift in 87Rb frequency standard

    Full text link
    The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in 87Rb using the relativistic all-order method and carried out detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly-excited states. Our predicted value for the Stark coefficient, k_S=-1.240(4)\times 10^{-10}\text{Hz/(V/m)}^{2} is three times more accurate than the previous calculation [1].Comment: 7 page

    Frequency-dependent polarizabilities of alkali atoms from ultraviolet through infrared spectral regions

    Full text link
    We present results of first-principles calculations of the frequency-dependent polarizabilities of all alkali atoms for light in the wavelength range 300-1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. This work is motivated by recent experiments involving simultaneous optical trapping of two different alkali species. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency.Comment: 6 pages, 2 figure

    Electric Quadrupole Moments of Metastable States of Ca+, Sr+, and Ba+

    Full text link
    Electric quadrupole moments of the metastable nd3/2 and nd5/2 states of Ca+, Sr+, and Ba+ are calculated using the relativistic all-order method including all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function to provide recommended values for the cases where no experimental data are available. The contributions of all non-linear single and double terms are also calculated for the case of Ca+ for comparison of our approach with the CCSD(T) results. The third-order many body perturbation theory is used to evaluate contributions of high partial waves and the Breit interaction. The remaining omitted correlation corrections are estimated as well. Extensive study of the uncertainty of our calculations is carried out to establish accuracy of our recommended values to be 0.5% - 1% depending on the particular ion. Comprehensive comparison of our results with other theoretical values and experiment is carried out. Our result for the quadrupole moment of the 3d5/2 state of Ca+ ion, 1.849(17)ea_0^2, is in agreement with the most precise recent measurement 1.83(1)ea_0^2 by Roos et al. [Nature 443, 316 (2006)].Comment: 7 page

    Excitation energies, hyperfine constants, E1, E2, M1 transition rates, and lifetimes of (6s2)nl states in Tl I and Pb II

    Full text link
    Energies of np (n=6-9), ns (n=7-9), nd (n=6-8), and nf (n=5-6) states in Tl I and Pb II are obtained using relativistic many-body perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the 72 possible electric-dipole transitions. Electric-quadrupole and magnetic-dipole matrix elements are evaluated to obtain np(3/2) - mp(1/2) (n,m=6,7) transition rates. Hyperfine constants A are evaluated for a number of states in 205Tl. First-, second-, third-, and all-order corrections to the energies and matrix elements and first- and second-order Breit corrections to energies are calculated. In our implementation of the all-order method, single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. These calculations provide a theoretical benchmark for comparison with experiment and theory.Comment: twelve tables, no figure

    Breit Interaction and Parity Non-conservation in Many-Electron Atoms

    Full text link
    We present accurate {\em ab initio} non-perturbative calculations of the Breit correction to the parity non-conserving (PNC) amplitudes of the 6s7s6s-7s and 6s5d3/26s-5d_{3/2} transitions in Cs, 7s8s7s-8s and 7s6d3/27s-6d_{3/2} transitions in Fr, 6s5d3/26s-5d_{3/2} transition in Ba+^+, 7s6d3/27s-6d_{3/2} transition in Ra+^+, and 6p1/26p3/26p_{1/2} - 6p_{3/2} transition in Tl. The results for the 6s7s6s-7s transition in Cs and 7s8s7s-8s transition in Fr are in good agreement with other calculations while calculations for other atoms/transitions are presented for the first time. We demonstrate that higher-orders many-body corrections to the Breit interaction are especially important for the sds-d PNC amplitudes. We confirm good agreement of the PNC measurements for cesium and thallium with the standard model .Comment: 9 pages, 1 figur

    Resolving all-order method convergence problems for atomic physics applications

    Full text link
    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the CI+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, reduced linear equation (RLE) and direct inversion of iterative subspace (DIIS). Examples are presented for B, Al, Zn+^+, and Yb+^+. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications

    Scientometric Characteristic of Theses on Criminal Law Defended At the Universities of the Russian Empire (1815-1917)

    Get PDF
    There are analyzed the works of scientists who defended their criminal law theses at the universities of the Russian Empire. The chronological scopes of the research are limited by the date of defense of the first and the last theses on criminal law which are known to the authors. The territorial scope of this article covers the limits of the Russian Empir

    State-insensitive bichromatic optical trapping

    Full text link
    We propose a scheme for state-insensitive trapping of neutral atoms by using light with two independent wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure
    corecore