526 research outputs found

    Relativistic many-body calculations of the Stark-induced amplitude of the 6P1/2 -7P1/2 transition in thallium

    Full text link
    Stark-induced amplitudes for the 6P1/2 - 7P1/2 transition in Tl I are calculated using the relativistic SD approximation in which single and double excitations of Dirac-Hartree-Fock levels are summed to all orders in perturbation theory. Our SD values alpha S = 368 a0 3 and beta S= 298 a 0 3 are in good agreement with the measurements alpha S=377(8) a 0 3$ and beta S = 313(8) a 0 3 by D. DeMille, D. Budker, and E. D. Commins [Phys. Rev. A 50, 4657 (1994)]. Calculations of the Stark shifts in the 6P1/2 - 7P1/2 and 6P1/2 - 7S1/2 transitions are also carried out. The Stark shifts predicted by our calculations agree with the most accurate measured values within the experimental uncertainties for both transitions

    Blackbody radiation shift in 87Rb frequency standard

    Full text link
    The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in 87Rb using the relativistic all-order method and carried out detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly-excited states. Our predicted value for the Stark coefficient, k_S=-1.240(4)\times 10^{-10}\text{Hz/(V/m)}^{2} is three times more accurate than the previous calculation [1].Comment: 7 page

    Frequency-dependent polarizabilities of alkali atoms from ultraviolet through infrared spectral regions

    Full text link
    We present results of first-principles calculations of the frequency-dependent polarizabilities of all alkali atoms for light in the wavelength range 300-1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. This work is motivated by recent experiments involving simultaneous optical trapping of two different alkali species. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency.Comment: 6 pages, 2 figure

    Electric Quadrupole Moments of Metastable States of Ca+, Sr+, and Ba+

    Full text link
    Electric quadrupole moments of the metastable nd3/2 and nd5/2 states of Ca+, Sr+, and Ba+ are calculated using the relativistic all-order method including all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function to provide recommended values for the cases where no experimental data are available. The contributions of all non-linear single and double terms are also calculated for the case of Ca+ for comparison of our approach with the CCSD(T) results. The third-order many body perturbation theory is used to evaluate contributions of high partial waves and the Breit interaction. The remaining omitted correlation corrections are estimated as well. Extensive study of the uncertainty of our calculations is carried out to establish accuracy of our recommended values to be 0.5% - 1% depending on the particular ion. Comprehensive comparison of our results with other theoretical values and experiment is carried out. Our result for the quadrupole moment of the 3d5/2 state of Ca+ ion, 1.849(17)ea_0^2, is in agreement with the most precise recent measurement 1.83(1)ea_0^2 by Roos et al. [Nature 443, 316 (2006)].Comment: 7 page

    Excitation energies, hyperfine constants, E1, E2, M1 transition rates, and lifetimes of (6s2)nl states in Tl I and Pb II

    Full text link
    Energies of np (n=6-9), ns (n=7-9), nd (n=6-8), and nf (n=5-6) states in Tl I and Pb II are obtained using relativistic many-body perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the 72 possible electric-dipole transitions. Electric-quadrupole and magnetic-dipole matrix elements are evaluated to obtain np(3/2) - mp(1/2) (n,m=6,7) transition rates. Hyperfine constants A are evaluated for a number of states in 205Tl. First-, second-, third-, and all-order corrections to the energies and matrix elements and first- and second-order Breit corrections to energies are calculated. In our implementation of the all-order method, single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. These calculations provide a theoretical benchmark for comparison with experiment and theory.Comment: twelve tables, no figure

    Breit Interaction and Parity Non-conservation in Many-Electron Atoms

    Full text link
    We present accurate {\em ab initio} non-perturbative calculations of the Breit correction to the parity non-conserving (PNC) amplitudes of the 6s−7s6s-7s and 6s−5d3/26s-5d_{3/2} transitions in Cs, 7s−8s7s-8s and 7s−6d3/27s-6d_{3/2} transitions in Fr, 6s−5d3/26s-5d_{3/2} transition in Ba+^+, 7s−6d3/27s-6d_{3/2} transition in Ra+^+, and 6p1/2−6p3/26p_{1/2} - 6p_{3/2} transition in Tl. The results for the 6s−7s6s-7s transition in Cs and 7s−8s7s-8s transition in Fr are in good agreement with other calculations while calculations for other atoms/transitions are presented for the first time. We demonstrate that higher-orders many-body corrections to the Breit interaction are especially important for the s−ds-d PNC amplitudes. We confirm good agreement of the PNC measurements for cesium and thallium with the standard model .Comment: 9 pages, 1 figur

    Magic wavelengths for the 5s−18s5s-18s transition in rubidium

    Get PDF
    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s−18s5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value

    State-insensitive bichromatic optical trapping

    Full text link
    We propose a scheme for state-insensitive trapping of neutral atoms by using light with two independent wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure

    Calculation of parity nonconserving amplitude and other properties of Ra+

    Full text link
    We have calculated parity nonconserving 7s - 6d_{3/2} amplitude E_PNC in 223Ra+ using high-precision relativistic all-order method where all single and double excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Detailed study of the uncertainty of the parity nonconserving (PNC) amplitude is carried out; additional calculations are performed to estimate some of the missing correlation corrections. A systematic study of the parity conserving atomic properties, including the calculation of the energies, transition matrix elements, lifetimes, hyperfine constants, quadrupole moments of the 6d states, as well as dipole and quadrupole ground state polarizabilities, is carried out. The results are compared with other theoretical calculations and available experimental values.Comment: 10 page
    • …
    corecore