3 research outputs found

    Simulation of Rice Yield and its Components Using SWAP Model and Remote Sensing Technology for Optimal Use of Water and Soil

    Get PDF
    Given the importance of soil and water resources in the development of sustainable agriculture, increasing world population and the growing need for crop production, predicting crop yields using plant simulation models and remote sensing technology is very crucial. The aim of this study was to estimate the yield of rice components including straw, paddy and biomass of Hashemi cultivar during different growth stages with SWAP model and to provide regression equations by extracting NDVI and SAVI plant indices from Sentinel-2 and Landsat-7 and 8 satellite images. It was done in the National Rice Research Institute. Comparison of statistical variables indicated that the mean values of coefficient of determination (R2) and model efficiency factor (EF) in estimating the yield of rice components in different stages of growth with SWAP model were more than 0.70 and 0.90, respectively, and with an error of 1.93 to 6.54% was equivalent to 134.21 to 470.43 kg/ha. The slight difference between the measured and simulated values showed that the SWAP model estimates the rice yield in the study area with appropriate accuracy. The results also showed that the extracted NDVI and SAVI indices with very good accuracy estimate the yield of rice components at different stages of growth. However, the highest amount of correlation was related to the reproductive development stage. Finally, R2 for NDVI at different growth stages as well as  the entire growth period for straw, paddy, and biomass were higher than the SAVI index, revealing more accuracy of NDVI than SAVI

    Evaluating capability of two halophyte plants for phytoextraction of cadmium from contaminated soils

    No full text
    Selecting an appropriate plant is a key factor for the phytoextraction of heavy metals from contaminated soils. The possibility of using two halophytes for the remediation of cadmium (Cd) from contaminated soils was investigated. Consequently, an experiment with Chenopodium album L. and Chenopodium botrys L. including Cd treatments of 0, 5,10, 20, 40, 60, 80 and 100 ppm was conducted. Designated analyses including fresh weight, dry weight, and Cd concentrations in shoots and roots were performed. Results indicated that for both plants, a logarithmic model performed best to demonstrate the relationship between total soil Cd with shoot Cd and dry matter. Although both halophytes had considerable capability to remediate Cd from soils, C. botrys demonstrated greater potential to accumulate Cd in shoots. The range of bioconcentration factor (BCF) in C. botrys was obtained to be 0.8 to 8.8 and in C. album was 0.4 to 1.73. For C album, BCF in most treatments was lower than 1.0, but for C. botrys, it was mostly larger than 1.0. Although both plants can be used as hyperaccumulators to remediate Cd-polluted soils, the clean-up time of C. album under higher Cd concentrations was shorter than C. botrys L
    corecore