72 research outputs found

    Recruiting New Teachers to Urban School Districts: What Incentives Will Work

    Get PDF
    Explores the effectiveness of financial incentives in attracting qualified teachers to low-performing and hard-to-staff schools. Surveys teachers in training on factors in job choices and considers the size of an effective pay incentive and alternatives

    Constraints on the electron-hole pair creation energy and Fano factor below 150 eV from Compton scattering in a Skipper-CCD

    Full text link
    Fully-depleted thick silicon Skipper-charge-coupled devices (Skipper-CCDs) are an important technology to probe neutrino and light-dark-matter interactions due to their sub-electron read-out noise. However, the successful search for rare neutrino or dark-matter events requires the signal and all backgrounds to be fully characterized. In particular, a measurement of the electron-hole pair creation energy below 150 eV and the Fano factor are necessary for characterizing the dark matter and neutrino signals. Moreover, photons from background radiation may Compton scatter in the silicon bulk, producing events that can mimic a dark matter or neutrino signal. We present a measurement of the Compton spectrum using a Skipper-CCD and a 241^{241}Am source. With these data, we estimate the electron-hole pair-creation energy to be (3.71±0.08)\left(3.71 \pm 0.08\right) eV at 130 K in the energy range between 99.3 eV and 150 eV. By measuring the widths of the steps at 99.3 eV and 150 eV in the Compton spectrum, we introduce a novel technique to measure the Fano factor, setting an upper limit of 0.31 at 90% C.L. These results prove the potential of Skipper-CCDs to characterize the Compton spectrum and to measure precisely the Fano factor and electron-hole pair creation energy below 150 eV

    The GAPS Experiment to Search for Dark Matter using Low-energy Antimatter

    Full text link
    The GAPS experiment is designed to carry out a sensitive dark matter search by measuring low-energy cosmic ray antideuterons and antiprotons. GAPS will provide a new avenue to access a wide range of dark matter models and masses that is complementary to direct detection techniques, collider experiments and other indirect detection techniques. Well-motivated theories beyond the Standard Model contain viable dark matter candidates which could lead to a detectable signal of antideuterons resulting from the annihilation or decay of dark matter particles. The dark matter contribution to the antideuteron flux is believed to be especially large at low energies (E < 1 GeV), where the predicted flux from conventional astrophysical sources (i.e. from secondary interactions of cosmic rays) is very low. The GAPS low-energy antiproton search will provide stringent constraints on less than 10 GeV dark matter, will provide the best limits on primordial black hole evaporation on Galactic length scales, and will explore new discovery space in cosmic ray physics. Unlike other antimatter search experiments such as BESS and AMS that use magnetic spectrometers, GAPS detects antideuterons and antiprotons using an exotic atom technique. This technique, and its unique event topology, will give GAPS a nearly background-free detection capability that is critical in a rare-event search. GAPS is designed to carry out its science program using long-duration balloon flights in Antarctica. A prototype instrument was successfully flown from Taiki, Japan in 2012. GAPS has now been approved by NASA to proceed towards the full science instrument, with the possibility of a first long-duration balloon flight in late 2020. Here we motivate low-energy cosmic ray antimatter searches and discuss the current status of the GAPS experiment and the design of the payload.Comment: 8 pags, 3 figures, Proc. 35th International Cosmic Ray Conference (ICRC 2017), Busan, Kore

    Cosmic Antihelium Nuclei Sensitivity of the GAPS Experiment

    Full text link
    The General Antiparticle Spectrometer (GAPS) is an Antarctic balloon experiment designed for low-energy (0.1-0.3 GeV/nn) cosmic antinuclei as signatures of dark matter annihilation or decay. GAPS is optimized to detect low-energy antideuterons, as well as to provide unprecedented sensitivity to low-energy antiprotons and antihelium nuclei. The novel GAPS antiparticle detection technique, based on the formation, decay, and annihilation of exotic atoms, provides greater identification power for these low-energy antinuclei than previous magnetic spectrometer experiments. This work reports the sensitivity of GAPS to detect antihelium-3 nuclei, based on full instrument simulation, event reconstruction, and realistic atmospheric influence simulations. The report of antihelium nuclei candidate events by AMS-02 has generated considerable interest in antihelium nuclei as probes of dark matter and other beyond the Standard Model theories. GAPS is in a unique position to detect or set upper limits on the cosmic antihelium nuclei flux in an energy range that is essentially free of astrophysical background. In three long-duration balloon flights, GAPS will be sensitive to an antihelium flux on the level of 1.31.2+4.5106m2sr1s1(GeV/n)11.3^{+4.5}_{-1.2}\cdot 10^{-6}\mathrm{m^{-2}sr^{-1}s^{-1}}(\mathrm{GeV}/n)^{-1} (95% CL) in the energy range of 0.11-0.3 GeV/nn, opening a new window on rare cosmic physics.Comment: 12 pages, 5 figure

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Get PDF

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Full text link
    Dark matter lighter than 10 GeV/c2^2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c2^2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies
    corecore