4 research outputs found
Vibration characteristics of multilayer functionally graded microplates with variable thickness reinforced by graphene platelets resting on the viscoelastic medium under thermal effects
© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives CC BY-NC-ND licence, https://creativecommons.org/licenses/by-nc-nd/4.0/Due to their improved mechanical properties and adaptability, microplates with tailored variable thickness profiles are becoming essential parts of advanced micro- and nanoelectromechanical systems (MEMS and NEMS). This study conducts a thorough analytical analysis of the vibration properties of thermally loaded, multilayer functionally graded graphene platelet-reinforced composite (FG-GPLRC) microplates of linearly or parabolically varying thickness resting on viscoelastic medium under different boundary conditions. The Halpin-Tsai micromechanical model and the law of mixtures are employed to calculate the effective material characteristics for various reinforcement distributions in the microplate. These distributions encompass uniformly symmetric and asymmetric arrangements. The study utilized the first-order shear deformation theory (FSDT) in conjunction with the modified strain gradient theory (MSGT) and Hamilton's principle to generate the dynamic governing equations for the structure, accounting for size-dependent effects. The resulting equations are afterwards solved using the utilization of the Galerkin technique. This enables the evaluation of the proposed solution's correctness and precision. The impact of various factors on vibration behavior is investigated through numerical analysis. These factors encompass length scale parameters, temperature fluctuations, temperature distribution profiles, boundary conditions, the distribution pattern of the GPL, taper constants in both unidirectional and bidirectional scenarios, the weight fraction of the GPL.Peer reviewe
Hygrothermomechanical loading-induced vibration study of multilayer piezoelectric nanoplates with functionally graded porous cores resting on a variable viscoelastic substrate
Harnessing vibrations in multifunctional nanostructured plates is pivotal to next-gen microsystems but necessitates understanding scale effects under multifield loading. Investigated in this work are the forced and unforced vibrations of multilayered piezoelectric nanoplates supported on a variable viscoelastic medium and loaded hygrothermo-electromechanically with functionally graded porous (FGP) cores. The viscoelastic foundation is supposed to demonstrate non-linear changes in both stiffness and damping characteristics in the x-coordinate direction. The goal is to improve the accuracy of the results by using the nonlocal strain gradient theory (NSGT) and the third-order shear deformation assumption (TSDA), which include the effects of hardening and softening materials. The FGP core layer considers four states of porosity distribution patterns. These porosity distributions are expected to change in both the in-plane and thickness directions. The governing partial differential equations resulting from Hamilton's principle can be reduced to a system of algebraic equations by applying the Galerkin method. The parametric studies evaluate the effects of several factors, such as the initial electric voltage, viscoelastic medium parameters, moisture rise, temperature changes, porosity distributions, FG index, nonlocal and strain gradient features, and boundary conditions, on the vibration response. The novelty lies in the incorporation of advanced theories, such as the NSGT and TSDT, which capture size-dependent effects and material hardening/softening phenomena. Additionally, the consideration of four distinct porosity distribution patterns in the FGP core layer provides insights into the influence of porosity gradients on the dynamic response. The proposed model can guide the design and optimization of multifunctional nanostructured plates for applications in next-generation microsystems, energy harvesting devices, and smart structures
Hygrothermomechanical loading-induced vibration study of multilayer piezoelectric nanoplates with functionally graded porous cores resting on a variable viscoelastic substrate
Harnessing vibrations in multifunctional nanostructured plates is pivotal to next-gen microsystems but necessitates understanding scale effects under multifield loading. Investigated in this work are the forced and unforced vibrations of multilayered piezoelectric nanoplates supported on a variable viscoelastic medium and loaded hygrothermo-electromechanically with functionally graded porous (FGP) cores. The viscoelastic foundation is supposed to demonstrate non-linear changes in both stiffness and damping characteristics in the x-coordinate direction. The goal is to improve the accuracy of the results by using the nonlocal strain gradient theory (NSGT) and the third-order shear deformation assumption (TSDA), which include the effects of hardening and softening materials. The FGP core layer considers four states of porosity distribution patterns. These porosity distributions are expected to change in both the in-plane and thickness directions. The governing partial differential equations resulting from Hamilton's principle can be reduced to a system of algebraic equations by applying the Galerkin method. The parametric studies evaluate the effects of several factors, such as the initial electric voltage, viscoelastic medium parameters, moisture rise, temperature changes, porosity distributions, FG index, nonlocal and strain gradient features, and boundary conditions, on the vibration response. The novelty lies in the incorporation of advanced theories, such as the NSGT and TSDT, which capture size-dependent effects and material hardening/softening phenomena. Additionally, the consideration of four distinct porosity distribution patterns in the FGP core layer provides insights into the influence of porosity gradients on the dynamic response. The proposed model can guide the design and optimization of multifunctional nanostructured plates for applications in next-generation microsystems, energy harvesting devices, and smart structures
Identification of crack location in metallic biomaterial cantilever beam subjected to moving load base on central difference approximation
If not detected early, the cracks in structural components may ultimately result in the failure of the structure. This issue becomes even more critical when the component under investigation is a prosthesis placed in the human body. This study presents a crack location identification method based on the time domain in a cantilever beam of metallic biomaterials (CBMB). The absolute difference between the central difference approximation of the root mean square (RMS) of displacement of points on the cracked and uncracked beams was applied as a cracked location indicator. Captured time-domain data (displacement) at each node of the cracked and uncracked beams were processed into a central difference approximation of the RMS of displacement. Then, the crack could be detected by a sudden change of the cracked location indicator. The feasibility and effectiveness of the proposed method were validated by numerical simulations. The finite-element simulation of a CBMB with a transverse notch was analyzed in the numerical study. The notch or crack was detected along the beam under a moving load at various locations. A set of simulation experiments and numerical calculations was performed to determine whether the proposed identification method would accurately detect the location of a crack in a cantilever beam under a moving load compared to the location found by an exact solution method. The results showed that the proposed method was not only as able as the analytical method but also robust against noise: it was able to detect a crack precisely under 5% noise