928 research outputs found
An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals
The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature
Structure Formation in Dark Matter Particle Production Cosmology
We investigate a cosmological scenario in which the dark matter particles can
be created during the evolution of the Universe. By regarding the Universe as
an open thermodynamic system and using non-equilibrium thermodynamics, we
examine the mechanism of gravitational particle production. In this setup, we
study the large-scale structure (LSS) formation of the Universe in the
Newtonian regime of perturbations and derive the equations governing the
evolution of the dark matter overdensities. Then, we implement the cosmological
data from Planck 2018 CMB measurements, SNe Ia and BAO observations, as well as
the Riess et al. (2019) local measurement for to provide some
cosmological constraints for the parameters of our model. We see that the best
case of our scenario () fits the observational
data better than the baseline CDM model () at the background level. We moreover estimate the growth factor of
linear perturbations and show that the best case of our model
() fits the LSS data significantly better than
the CDM model (). Consequently, our
model also makes a better performance at the level of the linear perturbations
compared to the standard cosmological model.Comment: 30 pages, 8 figure
Van-der-Waals potentials of paramagnetic atoms
We study single- and two-atom van der Waals interactions of ground-state
atoms which are both polarizable and paramagnetizable in the presence of
magneto-electric bodies within the framework of macroscopic quantum
electrodynamics. Starting from an interaction Hamiltonian that includes
particle spins, we use leading-order perturbation theory for the van der Waals
potentials expressed in terms of the polarizability and magnetizability of the
atom(s). To allow for atoms embedded in media, we also include local-field
corrections via the real-cavity model. The general theory is applied to the
potential of a single atom near a half space and that of two atoms embedded in
a bulk medium or placed near a sphere, respectively.Comment: 18 pages, 3 figures, 1 tabl
Are there any good digraph width measures?
Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the "nice" properties of treewidth:
First, being \emph{algorithmically useful} i.e. admitting polynomial-time
algorithms for all \MS1-definable problems on digraphs of bounded width. And,
second, having nice \emph{structural properties} i.e. being monotone under
taking subdigraphs and some form of arc contractions. As for the former,
(undirected) \MS1 seems to be the least common denominator of all reasonably
expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set.The latter property is a necessary condition for a
width measure to be characterizable by some version of the cops-and-robber game
characterizing the ordinary treewidth. Our main result is that \emph{any
reasonable} algorithmically useful and structurally nice digraph measure cannot
be substantially different from the treewidth of the underlying undirected
graph. Moreover, we introduce \emph{directed topological minors} and argue that
they are the weakest useful notion of minors for digraphs
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Atomic form factors are widely used for the characterization of targets and
specimens, from crystallography to biology. By using recent mathematical
results, here we derive an analytical expression for the atomic form factor
within the independent particle model constructed from nonrelativistic screened
hydrogenic wavefunctions. The range of validity of this analytical expression
is checked by comparing the analytically obtained form factors with the ones
obtained within the Hartee-Fock method. As an example, we apply our analytical
expression for the atomic form factor to evaluate the differential cross
section for Rayleigh scattering off neutral atoms.Comment: 7 pages, 1 figur
Undirected Graphs of Entanglement Two
Entanglement is a complexity measure of directed graphs that origins in fixed
point theory. This measure has shown its use in designing efficient algorithms
to verify logical properties of transition systems. We are interested in the
problem of deciding whether a graph has entanglement at most k. As this measure
is defined by means of games, game theoretic ideas naturally lead to design
polynomial algorithms that, for fixed k, decide the problem. Known
characterizations of directed graphs of entanglement at most 1 lead, for k = 1,
to design even faster algorithms. In this paper we present an explicit
characterization of undirected graphs of entanglement at most 2. With such a
characterization at hand, we devise a linear time algorithm to decide whether
an undirected graph has this property
Geohazards analysis of Pisa tunnel in a fractured incompetent rocks in Zagros Mountains, Iran.
The Pisa 2 tunnel with 740 m in length and 20° N trend is located along the Kazerun fault zone in Simply Folded Belt of Zagros, Iran. This tunnel has been excavated in the fractured incompetent marl layers with high expansive pressure of up to 2 kg/cm2. In this study, the geological hazards along the tunnel have been recognized and categorized. This study revealed that, in the long-term usage of the tunnel, the lining did not endure against the loading and the secondary leakages. It is mainly attributed due to the non-efficiencies of drainage and isolation systems in the tunnel site. Therefore, it caused asphalt damage, drainage damage, and wall distortion. FLAC3D software has been used in this research. We conducted various analyses for pre-excavation stress states, syn-excavation, and post-excavation strain states. The results showed no indication of instability and critical deformations during the excavation time. It also revealed that due to the non-efficiencies of drainage and isolation systems against secondary leakages and consequently marl expansion, the volumetric and shear strains (i.e., expansions and displacements) have exceeded from the critical states of strain along the tunnel. For various remedy purpose, this paper attempted several measures that can be taken in order to modify the drainage and isolation systems along the tunnel area. The reconstruction of drainage systems with suitable reinforced concrete and adequate slope has been proposed. The width of channel and isolation of backside of lining and implementation of multi-order outlets (i.e., backside of lining) for draining of groundwater into where the main drainage systems are located in the tunnel gallery were suggested
Thermal aspects of a low cost power electronic converter for high capacity, smart residential distribution networks
A key challenge facing the UK Distribution Network Operators (DNOs) today is the increasing demand for power being placed on residential networks. Also, the increase in distributed generation (DG) is now resulting in unacceptable local voltage rises and power quality issues. A cost effective solution to these problems can be achieved on the existing infrastructure by increasing the local network phase voltage to 400 V and stepping back down to 230 V at each house, using a DNO-owned, voltage regulated power electronic converter (PEC). The thermal and protection issues associated with the design of such a PEC, which is to be installed in the meterbox of each property, are discussed in this paper
- …