920 research outputs found
Bistable behavior of a two-mode Bose-Einstein condensate in an optical cavity
We consider a two-component Bose-Einstein condensate in a one-dimensional
optical cavity. Specifically, the condensate atoms are taken to be in two
degenerate modes due to their internal hyperfine spin degrees of freedom and
they are coupled to the cavity field and an external transverse laser field in
a Raman scheme. A parallel laser is also exciting the cavity mode. When the
pump laser is far detuned from its resonance atomic transition frequency, an
effective nonlinear optical model of the cavity-condensate system is developed
under Discrete Mode Approximation (DMA), while matter-field coupling has been
considered beyond the Rotating Wave Approximation. By analytical and numerical
solutions of the nonlinear dynamical equations, we examine the mean cavity
field and population difference (magnetization) of the condensate modes. The
stationary solutions of both the mean cavity field and normalized magnetization
demonstrate bistable behavior under certain conditions for the laser pump
intensity and matter-field coupling strength.Comment: Proceeding of Laser Physics 201
Performance modeling of fault-tolerant circuit-switched communication networks
Circuit switching (CS) has been suggested as an efficient switching method for supporting simultaneous communications (such as data, voice, and images) across parallel systems due to its ability to preserve both communication performance and fault-tolerant demands in such systems. In this paper we present an efficient scheme to capture the mean message latency in 2D torus with CS in the presence of faulty components. We have also conducted extensive simulation experiments, the results of which are used to validate the analytical mode
On quantifying fault patterns of the mesh interconnect networks
One of the key issues in the design of Multiprocessors System-on-Chip (MP-SoCs), multicomputers, and peerto- peer networks is the development of an efficient communication network to provide high throughput and low latency and its ability to survive beyond the failure of individual components. Generally, the faulty components may be coalesced into fault regions, which are classified into convex and concave shapes. In this paper, we propose a mathematical solution for counting the number of common fault patterns in a 2-D mesh interconnect network including both convex (|-shape, | |-shape, ý-shape) and concave (L-shape, Ushape, T-shape, +-shape, H-shape) regions. The results presented in this paper which have been validated through simulation experiments can play a key role when studying, particularly, the performance analysis of fault-tolerant routing algorithms and measure of a network fault-tolerance expressed as the probability of a disconnection
Software-based fault-tolerant routing algorithm in multidimensional networks
Massively parallel computing systems are being built with hundreds or thousands of components such as nodes, links, memories, and connectors. The failure of a component in such systems will not only reduce the computational power but also alter the network's topology. The software-based fault-tolerant routing algorithm is a popular routing to achieve fault-tolerance capability in networks. This algorithm is initially proposed only for two dimensional networks (Suh et al., 2000). Since, higher dimensional networks have been widely employed in many contemporary massively parallel systems; this paper proposes an approach to extend this routing scheme to these indispensable higher dimensional networks. Deadlock and livelock freedom and the performance of presented algorithm, have been investigated for networks with different dimensionality and various fault regions. Furthermore, performance results have been presented through simulation experiments
Recommended from our members
Robust search-free car number plate localization incorporating hierarchical saliency
There are two major shortcomings associated with presently implemented automatic license plate recognition (ALPR) systems: first, processing images with complex background is time-consuming and second, the results are not sufficiently accurate. To overcome these problems and also to achieve a robust recognition of multiple car number plates, saliency detection based on the ALPR system is used in this paper and also an improved and more effective definition of saliency is presented. In this new approach, the notion of the directionality of the edges using Gabor filtering and the detection of the patterns of numbers using L1 -norm have been added to the traditional saliency detection method. The proposed algorithm was tested on 660 images; some consisting of two or more cars.
A detection accuracy of 94.77% and an average execution time of 40 ms for 600 × 800 images are the marked outcomes. The proposed SB-ALPR method outperforms most of the state of the art techniques in terms of execution time and accuracy, and can be used in real-time applications. Also, unlike some recently introduced saliency-based ALPR methods, our two-stage saliency detection approach exploits smaller numbers of sample sizes to reduce the computation cost
Incorporating negentropy in saliency-based search free car number plate localization
License plate localization algorithms aim to detect license plates within the scene. In this paper, a new algorithm is discussed where the necessary conditions are imposed into the saliency detection equations. Measures of distance between probability distributions such as negentropy finds the candidate license plates in the image and the Bayesian methodology exploits the a priori information to estimate the highest probability for each candidate. The proposed algorithm has been tested for three datasets, consisting of gray-scale and color images. A detection accuracy of 96% and an average execution time of 80 ms for the first dataset are the marked outcomes. The proposed method outperforms most of the state-of-the-art techniques and it is suitable to use in real-time ALPR applications
- …