39 research outputs found

    Performance of Repetitive Tasks Induces Decreased Grip Strength and Increased Fibrogenic Proteins in Skeletal Muscle: Role of Force and Inflammation

    Get PDF
    Background This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis), collagen type I (Col1; a matrix component), and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen), in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. Methodology/Results To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF), or a high repetition high force handle-pulling task (HRHF), for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF) and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR) analyses of HRNF muscles showed increased expression of Col1 in weeks 3–9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4–6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. Conclusions/Significance Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were attenuated, at least short-term, by anti-inflammatory treatments

    The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification

    Get PDF
    The toothless (tl) mutation in the rat is a naturally occurring, autosomal recessive mutation resulting in a profound deficiency of bone-resorbing osteoclasts and peritoneal macrophages. The failure to resorb bone produces severe, unrelenting osteopetrosis, with a highly sclerotic skeleton, lack of marrow spaces, failure of tooth eruption, and other pathologies. Injections of CSF-1 improve some, but not all, of these. In this report we have used polymorphism mapping, sequencing, and expression studies to identify the genetic lesion in the tl rat. We found a 10-base insertion near the beginning of the open reading of the Csf1 gene that yields a truncated, nonfunctional protein and an early stop codon, thus rendering the tl rat CSF-1null. All mutants were homozygous for the mutation and all carriers were heterozygous. No CSF-1 transcripts were identified in rat mRNA that would avoid the mutation via alternative splicing. The biology and actions of CSF-1 have been elucidated by many studies that use another naturally occurring mutation, the op mouse, in which a single base insertion also disrupts the reading frame. The op mouse has milder osteoclastopenia and osteopetrosis than the tl rat and recovers spontaneously over the first few months of life. Thus, the tl rat provides a second model in which the functions of CSF-1 can be studied. Understanding the similarities and differences in the phenotypes of these two models will be important to advancing our knowledge of the many actions of CSF-1

    Evidence that the rat osteopetrotic mutation toothless (tl) is not in the TNFSF11 (TRANCE, RANKL, ODF, OPGL) gene

    Get PDF
    The toothless (tl) osteopetrotic mutation in the rat affects an osteoblast-derived factor that is required for normal osteoclast differentiation. Although the genetic locus remains unknown, the phenotypic impact of the tl mutation on multiple systems has been well characterized. Some of its actions are similar to tumornecrosis factor superfamily member 11(TNFSF11; also called TRANCE, RANKL, ODF and OPGL) null mice. TNFSF11 is a recently described member of the tumor necrosis factor superfamily which, when expressed by activated T cells, enhances the survival of antigen-presenting dendritic cells, and when expressed by osteoblasts, promotes the differentiation and activation of osteoclasts. The skeletal similarities between tl rats and TNFSF11(-/-) mice include 1) profound osteoclastopenia (TNFSF11-null mice, 0% and tl rats 0-1% of normal); 2) persistent, non-resolving osteopetrosis that results from 3) a defect not in the osteoclast lineage itself, but in an osteoblast-derived, osteoclastogenic signal; and 4) a severe chondrodysplasia of the growth plates of long bones not seen in other osteopetrotic mutations. The latter includes thickening of the growth plate with age, disorganization of chondrocyte columns, and disturbances of chondrocyte maturation. These striking similarities prompted us to undertake studies to rule in or out a TNFSF11 mutation in the tl rat. We looked for expression of TNFSF11 mRNA in tl long bones and found it to be over-expressed and of the correct size. We also tested TNFSF11 protein function in the tl rat. This was shown to be normal by flow cytometry experiments in which activated, spleen-derived T-cells from tl rats exhibited normal receptor binding competence, as measured by a recombinant receptor assay. We also found that tl rats develop histologically normal mesenteric and peripheral lymph nodes, which are absent from TNFSF11-null mice. Next, we found that injections of recombinant TNFSF11, which restores bone resorption in null mice, had no therapeutic effect in tl rats. Finally, gene mapping studies using co-segregation of polymorphic markers excluded the chromosomal region containing the TNFSF11 gene as harboring the mutation responsible for the tl phenotype. We conclude that, despite substantial phenotypic similarities to TNFSF11(-/-) mice, the tl rat mutation is not in the TNFSF11 locus, and that its identification must await the results of further studies

    Mutation in Osteoactivin Decreases Bone Formation in Vivo and Osteoblast Differentiation in Vitro

    Get PDF
    We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb+/SjJ (D2J/Gpnmb+)]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb+ mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb+ osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-β receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-β signaling. These data confirm the anabolic role of OA in postnatal bone formation

    Emerging Lung Cancer Therapeutic Targets Based on the Pathogenesis of Bone Metastases

    No full text
    Lung cancer is the second most common cancer and the leading cause of cancer related mortality in both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. It is widely accepted that tumor metastasis is a formidable barrier to effective treatment of lung cancer. The bone is one of the frequent metastatic sites for lung cancer occurring in a large number of patients. Bone metastases can cause a wide range of symptoms that could impair quality of life of lung cancer patients and shorten their survival. We strongly believe that molecular targets (tumor-related and bone microenvironment based) that have been implicated in lung cancer bone metastases hold great promise in lung cancer therapeutics. Thus, this paper discusses some of the emerging molecular targets that have provided insights into the cascade of metastases in lung cancer with the focus on bone invasion. It is anticipated that the information gathered might be useful in future efforts of optimizing lung cancer treatment strategies

    Emerging Lung Cancer Therapeutic Targets Based on the Pathogenesis of Bone Metastases

    No full text
    Lung cancer is the second most common cancer and the leading cause of cancer related mortality in both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. It is widely accepted that tumor metastasis is a formidable barrier to effective treatment of lung cancer. The bone is one of the frequent metastatic sites for lung cancer occurring in a large number of patients. Bone metastases can cause a wide range of symptoms that could impair quality of life of lung cancer patients and shorten their survival. We strongly believe that molecular targets (tumor-related and bone microenvironment based) that have been implicated in lung cancer bone metastases hold great promise in lung cancer therapeutics. Thus, this paper discusses some of the emerging molecular targets that have provided insights into the cascade of metastases in lung cancer with the focus on bone invasion. It is anticipated that the information gathered might be useful in future efforts of optimizing lung cancer treatment strategies

    Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis

    No full text
    The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment

    The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor

    No full text
    Abstract Background Neuroinflammation is one of the hallmarks of neurodegenerative diseases, such as Parkinson’s disease (PD). Activation of glial cells, including microglia and astrocytes, is a characteristic of the inflammatory response. Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that releases a soluble signaling peptide when cleaved by ADAM10 or other extracellular proteases. GPNMB has demonstrated a neuroprotective role in animal models of ALS and ischemia. However, the mechanism of this protection has not been well established. CD44 is a receptor expressed on astrocytes that can bind GPNMB, and CD44 activation has been demonstrated to reduce NFκB activation and subsequent inflammatory responses in macrophages. GPNMB signaling has not been investigated in models of PD or specifically in astrocytes. More recently, genetic studies have linked polymorphisms in GPNMB with risk for PD. Therefore, it is important to understand the role this signaling protein plays in PD. Methods We used data mining techniques to evaluate mRNA expression of GPNMB and its receptor CD44 in the substantia nigra of PD and control brains. Immunofluorescence and qPCR techniques were used to assess GPNMB and CD44 levels in mice treated with MPTP. In vitro experiments utilized the immortalized mouse astrocyte cell line IMA2.1 and purified primary mouse astrocytes. The effects of recombinant GPNMB on cytokine-induced astrocyte activation was determined by qPCR, immunofluorescence, and measurement of nitric oxide and reactive oxygen production. Results Increased GPNMB and CD44 expression was observed in the substantia nigra of human PD brains and in GFAP-positive astrocytes in an animal model of PD. GPNMB treatment attenuated cytokine-induced levels of inducible nitric oxide synthase, nitric oxide, reactive oxygen species, and the inflammatory cytokine IL-6 in an astrocyte cell line and primary mouse astrocytes. Using primary mouse astrocytes from CD44 knockout mice, we found that the anti-inflammatory effects of GPNMB are CD44-mediated. Conclusions These results demonstrate that GPNMB may exert its neuroprotective effect through reducing astrocyte-mediated neuroinflammation in a CD44-dependent manner, providing novel mechanistic insight into the neuroprotective properties of GPNMB
    corecore