3 research outputs found

    The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein

    No full text
    A gradual loss of neuronal function or structure causes neurodegenerative disorders such as Parkinson's and Alzheimer's. Neurological damage might cause cell death. Acrolein is a high-risk air and water contaminant that causes neurodegenerative disorders. Quercetin has several strategies for treating neurodegenerative disorders but has limited bioavailability inside the body. One of the hypotheses offered to improve quercetin's bioavailability is to convert it into quercetin nanoparticles. This study aims to comprehend the immunohistochemical devastation that might arise in the cerebellum because of acrolein treatment. Furthermore, the protective and ameliorative roles of quercetin nanoparticles against oxidative stress and neurotoxicity induced in mice by acrolein were assessed. Ninety male albino rats weighing 120 to 200 g were used in the present investigation. The animals were split up into the following six groups: the control group, the acrolein-treated group: animals were given acrolein (3 mg/kg) for 30 days, quercetin nanoparticles treated group: animals were given quercetin nanoparticles (30 mg/kg) for 30 days. The administration of acrolein was found to be connected to immunohistochemical abnormalities in the cerebellum. Marked differences were observed in Bax, Bcl-2, TNF-α, and GFAP expressions in the cerebellum. Treatment of rats with quercetin nanoparticles either before or after treatment with acrolein has been found to preserve the cerebellum tissues from the toxic impacts and oxidative stress induced by acrolein. This may open the door to more nanomedicine studies and a new avenue for employing nanoparticles as a therapeutic intervention in neurodegenerative illnesses

    Impacts of Dietary Selenium Nanoparticles from <i>Spirulina platensis</i> on Growth Performance, Physio-Biochemical Components and Alleviating Effect against Cadmium Toxicity in Pacific White Shrimp <i>Litopenaeus vannamei</i>

    No full text
    Shrimp culture is quite important and popular across the world. This study aimed to evaluate the growth-promoting potential of synthesized selenium nanoparticles from Spirulina platensis extract (SP-SeNPs) as a food source for Pacific whiteleg shrimp (Litopenaeus vannamei). However, pollution is considered a significant element affecting shrimp health and development. The effectiveness of SP-SeNPs in alleviating the negative effects of cadmium toxicity was also evaluated. Firstly, the shrimps (about 120 individuals with 6.0 ± 0.12 g of initial weight) were divided randomly into four groups in triplicates (30 shrimps/ treatment). The control group (SP-SeNPs—0 mg/kg diet) and three treatments were fed dietary SP-SeNPs (0.250, 0.50, and 1.0 mg/kg diet) for 56 days. Growth performance, digestive enzymes activities (protease, amylase, and lipase), and other biochemical components (total protein, lipid, amino acids, and carbohydrate) were evaluated. After 56 days of growth, another 150 adult shrimps were used under laboratory conditions to determine median lethal concentration of cadmium (96 h LC50), and 30 individuals were treated with cadmium (1/2 of LC50, 0.2 mg L−1) for 10 days only. Tissue samples were collected for measuring catalase (CAT), total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) levels, cadmium bioaccumulation, and histopathological investigation. The results illustrated that the application of SP-SeNPs as feed additives at varying levels significantly improved growth performance (high weight gain, specific growth rate, and low feed conversion rates) relative to the control group. Furthermore, dietary SP-SeNPs enhanced digestive enzyme activities and the concentrations of biochemical components more than the control group. Upon concurrent exposure to cadmium, the antioxidative status was significantly enhanced, and histopathological alterations were mitigated. In conclusion, this study recommended supplementation of SP-SeNPs at 0.50 mg/kg diet to enhance optimal growth rate, digestive enzyme activities, levels of antioxidants in Litopenaeus vannamei, and mitigate the pathological alternations induced with Cd toxicity

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore