26 research outputs found

    Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types

    Get PDF
    Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types

    Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis : a genome-wide association study

    Get PDF
    Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early-and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.Peer reviewe

    Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of Camptothecin

    Full text link
    [EN] We report the design, synthesis, characterization and in vitro testing of a novel nanodrug based on a covalent linking model that allows intracellular controlled release of the pharmaceutical payload. A new synthetic strategy is implemented by direct coupling of as-synthesized (pyridin-2-yldisulfanyl)alkyl carbonate derivatives of camptothecin (CPT) with thiol groups of silica hybrid nanoparticles containing a non-porous core and a mesoporous shell. Upon reaction with thiols in physiological conditions, disulfide bridge cleavage occurs, releasing the naked drug after an intramolecular cyclization mechanism. Additional incorporation of a fluorophore into particles core facilitates imaging at the subcellular level for the monitoring of uptake and delivery. Confocal microscopy experiments in HeLa cervix cancer cells confirms that nanoparticles enter the cells by endocytosis but are able to escape from endo-lysosomes and enter the cytosolic compartment to release their cargo. The incorporation to cells of L-buthionine-sulfoximine, a glutathione inhibitor allows concluding that the intracellular releasing mechanism is mainly driven by the reducing activity of this tripeptide. This camptothecin nanoplatform shows the same cytotoxic activity than the free drug and is clearly superior to those release systems depending on enzymatic hydrolysis (as determined by calculation of the IC50 ratios).This work was financially supported by "Comision Interministerial de Ciencia y Tecnologia" of Spain (projects CSD2009-00050 and MAT2012-39290-C02-02), and grants from CIBER-BBN (NanoMets Intramural Grant) "Fondo de Investigaciones Sanitarias - Instituto de Salud Carlos III" (PI080771) y "Universidad Catolica de Valencia San Vicente Martir" (PI2011-011-010). CM thanks the Spanish "Ministerio de Economia y Competitividad" for a FPU Ph.D. studentship (AP2008-02851). SSA thanks the "Universidad Catolica de Valencia San Vicente Martir" for a Ph.D. studentship.Muniesa Lajara, C.; Vicente Vilas, V.; Quesada Vilar, M.; Saez-Atienzar, S.; Blesa-Blesa, JR.; Abasolo, I.; Fernández, Y.... (2013). Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of Camptothecin. RSC Advances. 3(35):15121-15131. https://doi.org/10.1039/c3ra41404cS151211513133

    ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function

    Get PDF
    Understandingthepathogenicmechanismsof diseasemutations is critical toadvancingtreatments.ALS-associated mutations in the gene encoding the microtubulemotor KIF5A result in skipping of exon 27 (KIF5ADExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore,mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis

    Cumulative Genetic Score and C9orf72 Repeat Status Independently Contribute to Amyotrophic Lateral Sclerosis Risk in 2 Case-Control Studies

    Get PDF
    [Background and Objectives] Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores.[Methods] Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication.[Results] Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04–1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10−6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04–1.23).[Discussion] ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.National ALS Registry/CDC/ATSDR (1R01TS000289); National ALS Registry/CDC/ATSDR CDCP-DHHS-US (CDC/ATSDR 200-2013-56856); NIEHS K23ES027221; NIEHS R01ES030049; NINDS R01NS127188, ALS Association (20-IIA-532), the Dr. Randall W. Whitcomb Fund for ALS Genetics, the Peter R. Clark Fund for ALS Research, the Scott L. Pranger ALS Clinic Fund, and the NeuroNetwork for Emerging Therapies at the University of Michigan. This work was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (Z01-AG000949-02). Project “ALS Genetic study in Madrid Autonomous Community” funded by “ESTRATEGIAS FRENTE A ENFERMEDADES NEURODEGENERATIVAS” from Spanish Ministry of Health.Peer reviewe

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition
    corecore