25 research outputs found

    Beam halo dynamics and control with hollow electron beams

    Full text link
    Experimental measurements of beam halo diffusion dynamics with collimator scans are reviewed. The concept of halo control with a hollow electron beam collimator, its demonstration at the Tevatron, and its possible applications at the LHC are discussed.Comment: 5 pages, 4 figures, in Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB2012), Beijing, China, 17-21 September 201

    ML-based Real-Time Control at the Edge: An Approach Using hls4ml

    Full text link
    This study focuses on implementing a real-time control system for a particle accelerator facility that performs high energy physics experiments. A critical operating parameter in this facility is beam loss, which is the fraction of particles deviating from the accelerated proton beam into a cascade of secondary particles. Accelerators employ a large number of sensors to monitor beam loss. The data from these sensors is monitored by human operators who predict the relative contribution of different sub-systems to the beam loss. Using this information, they engage control interventions. In this paper, we present a controller to track this phenomenon in real-time using edge-Machine Learning (ML) and support control with low latency and high accuracy. We implemented this system on an Intel Arria 10 SoC. Optimizations at the algorithm, high-level synthesis, and interface levels to improve latency and resource usage are presented. Our design implements a neural network, which can predict the main source of beam loss (between two possible causes) at speeds up to 575 frames per second (fps) (average latency of 1.74 ms). The practical deployed system is required to operate at 320 fps, with a 3ms latency requirement, which has been met by our design successfully

    Fermilab Main Injector Beam Position Monitor Upgrade

    Get PDF
    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV. Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented

    Analog Signal Pre-Processing For The Fermilab Main Injector BPM Upgrade

    Get PDF
    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and some design details are presented, as well as first beam measurements of the prototype hardware
    corecore