4 research outputs found

    TIARA: a database for accurate analysis of multiple personal genomes based on cross-technology

    Get PDF
    High-throughput genomic technologies have been used to explore personal human genomes for the past few years. Although the integration of technologies is important for high-accuracy detection of personal genomic variations, no databases have been prepared to systematically archive genomes and to facilitate the comparison of personal genomic data sets prepared using a variety of experimental platforms. We describe here the Total Integrated Archive of Short-Read and Array (TIARA; http://tiara.gmi.ac.kr) database, which contains personal genomic information obtained from next generation sequencing (NGS) techniques and ultra-high-resolution comparative genomic hybridization (CGH) arrays. This database improves the accuracy of detecting personal genomic variations, such as SNPs, short indels and structural variants (SVs). At present, 36 individual genomes have been archived and may be displayed in the database. TIARA supports a user-friendly genome browser, which retrieves read-depths (RDs) and log2 ratios from NGS and CGH arrays, respectively. In addition, this database provides information on all genomic variants and the raw data, including short reads and feature-level CGH data, through anonymous file transfer protocol. More personal genomes will be archived as more individuals are analyzed by NGS or CGH array. TIARA provides a new approach to the accurate interpretation of personal genomes for genome research

    An All-in-One Vehicle Type and License Plate Recognition System Using YOLOv4

    No full text
    In smart surveillance and urban mobility applications, camera-equipped embedded platforms with deep learning technology have demonstrated applicability and effectiveness in identifying various targets. These use cases can be found in a variety of contexts and locations. It is critical to collect relevant data from the location where the application will be deployed. In this paper, we propose an integrated vehicle type and license plate recognition system using YOLOv4, which consists of vehicle type detection, license plate detection, and license plate character detection to better support the context of Korean vehicles in multilane highway and urban environments. Using our dataset of one to four multilane images, our system detected six vehicle classes and license plates with mAP of 98.0%, 94.0%, 97.1%, and 84.6%, respectively. On our dataset and a publicly available open dataset, our system demonstrated mAP of 99.3% and 99.4% for the detected license plates, respectively. From 4K high-resolution images, our system was able to detect minuscule license plates as small as 100 pixels wide. We believe that our system can be used in densely populated regions to address the high demands for enhanced visual sensitivity in smart cities and Internet-of-Things
    corecore