39 research outputs found

    Computationally Efficient Hybrid Interpolation and Baseline Restoration of the Brain-PET Pulses

    Get PDF
    The design and component level architectures of a novel offset compensated digital baseline restorer (BLR) and an original hybrid interpolator are described. It allows diminishing the effect of modifications occurring during the readout of Positron Emission Tomography (PET) pulses. Without treatment, such artifacts can result in a reduction in the scanner’s performance, such as its sensitivity and resolution. The BLR recompenses the offset of PET pulses. Afterward, the pertinent parts of these pulses are located. Onward, the located portion of the signal is resampled by using a hybrid interpolator. This is constructed by cascading an optimized weighted least-square interpolator (WLSI) and a Simplified Linear Interpolator (SLI). The regulation processes for the WLSI coefficients and evaluation of the BLR and the interpolator modules are presented. The proposed hybrid interpolator’s computational complexity is compared with classic counterparts. These modules are implemented in Very High-Speed Integrated Circuits Hardware Description Language (VHDL) and synthesized on a Field Programmable Gate Array (FPGA). The functionality of the system is validated with an experimental setup. Results reveal notable computational gain along with adequate dynamic restitution of the bipolar offsets besides a useful and accurate improvement of the temporal resolution relative to the computationally complex conventional equivalents

    The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface

    Get PDF
    The Brain-Computer Interface (BCI) permits persons with impairments to interact with the real world without using the neuromuscular pathways. BCIs are based on artificial intelligence piloted systems. They collect brain activity patterns linked to the mental process and transform them into commands for actuators. The potential application of BCI systems is in the rehabilitation centres. In this context, a novel method is devised for automated identification of the Motor Imagery (MI) tasks. The contribution is an effective hybridization of the Multiscale Principal Component Analysis (MSPCA), Wavelet Packet Decomposition (WPD), statistical features extraction from subbands, and ensemble learning-based classifiers for categorization of the MI tasks. The intended electroencephalogram (EEG) signals are segmented and denoised. The denoising is achieved with a Daubechies algorithm-based wavelet transform (WT) incorporated in the MSPCA. The WT with the 5th level of decomposition is used. Onward, the Wavelet Packet Decomposition (WPD), with the 4th level of decomposition, is used for subbands formation. The statistical features are selected from each subband, namely, mean absolute value, average power, standard deviation, skewness, and kurtosis. Also, ratios of absolute mean values of adjacent subbands are computed and concatenated with other extracted features. Finally, the ensemble machine learning approach is used for the classification of MI tasks. The usefulness is evaluated by using the BCI competition III, MI dataset IVa. Results revealed that the suggested ensemble learning approach yields the highest classification accuracies of 98.69% and 94.83%, respectively, for the cases of subject-dependent and subject-independent problems.</p

    Model predictive control of consensus-based energy management system for DC microgrid

    Get PDF
    The increasing deployment and exploitation of distributed renewable energy source (DRES) units and battery energy storage systems (BESS) in DC microgrids lead to a promising research field currently. Individual DRES and BESS controllers can operate as grid-forming (GFM) or grid-feeding (GFE) units independently, depending on the microgrid operational requirements. In standalone mode, at least one controller should operate as a GFM unit. In grid-connected mode, all the controllers may operate as GFE units. This article proposes a consensus-based energy management system based upon Model Predictive Control (MPC) for DRES and BESS individual controllers to operate in both configurations (GFM or GFE). Energy management system determines the mode of power flow based on the amount of generated power, load power, solar irradiance, wind speed, rated power of every DG, and state of charge (SOC) of BESS. Based on selection of power flow mode, the role of DRES and BESS individual controllers to operate as GFM or GFE units, is decided. MPC hybrid cost function with auto-tuning weighing factors will enable DRES and BESS converters to switch between GFM and GFE. In this paper, a single hybrid cost function has been proposed for both GFM and GFE. The performance of the proposed energy management system has been validated on an EU low voltage benchmark DC microgrid by MATLAB/SIMULINK simulation and also compared with Proportional Integral (PI) & Sliding Mode Control (SMC) technique. It has been noted that as compared to PI & SMC, MPC technique exhibits settling time of less than 1µsec and 5% overshoot

    Investigation of vibration’s effect on driver in optimal motion cueing algorithm

    Get PDF
    The increased sensation error between the surroundings and the driver is a major problem in driving simulators, resulting in unrealistic motion cues. Intelligent control schemes have to be developed to provide realistic motion cues to the driver. The driver’s body model incorporates the effects of vibrations on the driver’s health, comfort, perception, and motion sickness, and most of the current research on motion cueing has not considered these factors. This article proposes a novel optimal motion cueing algorithm that utilizes the driver’s body model in conjunction with the driver’s perception model to minimize the sensation error. Moreover, this article employs H1 control in place of the linear quadratic regulator to optimize the quadratic cost function of sensation error. As compared to state of the art, we achieve decreased sensation error in terms of small root-mean-square difference (70%, 61%, and 84% decrease in case of longitudinal acceleration, lateral acceleration, and yaw velocity, respectively) and improved coefficient of cross-correlation (3% and 1% increase in case of longitudinal and lateral acceleration, respectively)

    Effective Resolution of an Adaptive Rate ADC

    No full text
    International audienceMost real life signals are of non-stationary nature. An efficient acquisition of such signals can be achieved by adapting the acquisition rate according to the input signal local characteristics. In this context, an ARADC (Adaptive Rate Analog to Digital Converter), based on the level crossing sampling is proposed. The ADC effective resolution is a classical parameter to characterize its performance. In this context, a novel method is devised to measure the ARADC resolution. A criterion for properly choosing the different system parameters in the aim of acquiring the desired effective resolution is also described

    An Improved Quality Adaptative Rate Filtering Technique Based on the Level Crossing Sampling

    No full text
    International audienceMostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption

    Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning

    No full text
    International audienceThis book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems

    Computationally Efficient Adaptive Rate Sampling and Adaptive Resolution Analysis

    No full text
    International audienceMostly the real life signals are time varying in nature. For proper characterization of such signals, time-frequency representation is required. The STFT (short-time Fourier transform) is a classical tool used for this purpose. The limitation of the STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is devised. It can adapt the sampling frequency and the window function length by following the input signal local variations. Therefore, it provides an adaptive resolution time-frequency representation of the input. The computational complexity of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational efficiency and hence of the processing power. The processing error of the proposed technique is also discussed
    corecore