54 research outputs found

    Learning Sensory Representations with Minimal Supervision

    Get PDF

    Pediatric Sleep Scoring In-the-wild from Millions of Multi-channel EEG Signals

    Full text link
    Sleep is critical to the health and development of infants, children, and adolescents, but pediatric sleep is severely under-researched compared to adult sleep in the context of machine learning for health and well-being. Here, we present the first automated pediatric sleep scoring results on a recent large-scale sleep study dataset that was collected during standard clinical care. We develop a transformer-based deep neural network model that learns to classify five sleep stages from millions of multi-channel electroencephalogram (EEG) signals with 78% overall accuracy. Further, we conduct an in-depth analysis of the model performance based on patient demographics and EEG channels

    On Out-of-Distribution Detection for Audio with Deep Nearest Neighbors

    Full text link
    Out-of-distribution (OOD) detection is concerned with identifying data points that do not belong to the same distribution as the model's training data. For the safe deployment of predictive models in a real-world environment, it is critical to avoid making confident predictions on OOD inputs as it can lead to potentially dangerous consequences. However, OOD detection largely remains an under-explored area in the audio (and speech) domain. This is despite the fact that audio is a central modality for many tasks, such as speaker diarization, automatic speech recognition, and sound event detection. To address this, we propose to leverage feature-space of the model with deep k-nearest neighbors to detect OOD samples. We show that this simple and flexible method effectively detects OOD inputs across a broad category of audio (and speech) datasets. Specifically, it improves the false positive rate (FPR@TPR95) by 17% and the AUROC score by 7% than other prior techniques

    Distilled Non-Semantic Speech Embeddings with Binary Neural Networks for Low-Resource Devices

    Full text link
    This work introduces BRILLsson, a novel binary neural network-based representation learning model for a broad range of non-semantic speech tasks. We train the model with knowledge distillation from a large and real-valued TRILLsson model with only a fraction of the dataset used to train TRILLsson. The resulting BRILLsson models are only 2MB in size with a latency less than 8ms, making them suitable for deployment in low-resource devices such as wearables. We evaluate BRILLsson on eight benchmark tasks (including but not limited to spoken language identification, emotion recognition, health condition diagnosis, and keyword spotting), and demonstrate that our proposed ultra-light and low-latency models perform as well as large-scale models

    Multi-task Self-Supervised Learning for Human Activity Detection

    Full text link
    Deep learning methods are successfully used in applications pertaining to ubiquitous computing, health, and well-being. Specifically, the area of human activity recognition (HAR) is primarily transformed by the convolutional and recurrent neural networks, thanks to their ability to learn semantic representations from raw input. However, to extract generalizable features, massive amounts of well-curated data are required, which is a notoriously challenging task; hindered by privacy issues, and annotation costs. Therefore, unsupervised representation learning is of prime importance to leverage the vast amount of unlabeled data produced by smart devices. In this work, we propose a novel self-supervised technique for feature learning from sensory data that does not require access to any form of semantic labels. We learn a multi-task temporal convolutional network to recognize transformations applied on an input signal. By exploiting these transformations, we demonstrate that simple auxiliary tasks of the binary classification result in a strong supervisory signal for extracting useful features for the downstream task. We extensively evaluate the proposed approach on several publicly available datasets for smartphone-based HAR in unsupervised, semi-supervised, and transfer learning settings. Our method achieves performance levels superior to or comparable with fully-supervised networks, and it performs significantly better than autoencoders. Notably, for the semi-supervised case, the self-supervised features substantially boost the detection rate by attaining a kappa score between 0.7-0.8 with only 10 labeled examples per class. We get similar impressive performance even if the features are transferred from a different data source. While this paper focuses on HAR as the application domain, the proposed technique is general and could be applied to a wide variety of problems in other areas

    Federated Fine-Tuning of Foundation Models via Probabilistic Masking

    Full text link
    Foundation Models (FMs) have revolutionized machine learning with their adaptability and high performance across tasks; yet, their integration into Federated Learning (FL) is challenging due to substantial communication overhead from their extensive parameterization. Current communication-efficient FL strategies, such as gradient compression, reduce bitrates to around 11 bit-per-parameter (bpp). However, these approaches fail to harness the characteristics of FMs, with their large number of parameters still posing a challenge to communication efficiency, even at these bitrate regimes. In this work, we present DeltaMask, a novel method that efficiently fine-tunes FMs in FL at an ultra-low bitrate, well below 1 bpp. DeltaMask employs stochastic masking to detect highly effective subnetworks within FMs and leverage stochasticity and sparsity in client masks to compress updates into a compact grayscale image using probabilistic filters, deviating from traditional weight training approaches. Our comprehensive evaluations across various datasets and architectures demonstrate DeltaMask efficiently achieves bitrates as low as 0.09 bpp, enhancing communication efficiency while maintaining FMs performance, as measured on 8 datasets and 5 pre-trained models of various network architectures.Comment: 19 pages, 9 figure

    Active Learning of Non-semantic Speech Tasks with Pretrained Models

    Full text link
    Pretraining neural networks with massive unlabeled datasets has become popular as it equips the deep models with a better prior to solve downstream tasks. However, this approach generally assumes that for downstream tasks, we have access to annotated data of sufficient size. In this work, we propose ALOE, a novel system for improving the data- and label-efficiency of non-semantic speech tasks with active learning (AL). ALOE uses pre-trained models in conjunction with active learning to label data incrementally and learns classifiers for downstream tasks, thereby mitigating the need to acquire labeled data beforehand. We demonstrate the effectiveness of ALOE on a wide range of tasks, uncertainty-based acquisition functions, and model architectures. Training a linear classifier on top of a frozen encoder with ALOE is shown to achieve performance similar to several baselines that utilize the entire labeled data

    Communication-Efficient Federated Learning through Adaptive Weight Clustering and Server-Side Distillation

    Full text link
    Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices while preserving data privacy. Despite its potential benefits, FL is hindered by excessive communication costs due to repeated server-client communication during training. To address this challenge, model compression techniques, such as sparsification and weight clustering are applied, which often require modifying the underlying model aggregation schemes or involve cumbersome hyperparameter tuning, with the latter not only adjusts the model's compression rate but also limits model's potential for continuous improvement over growing data. In this paper, we propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation to reduce communication costs while learning highly generalizable models. Through a comprehensive evaluation on diverse public datasets, we demonstrate the efficacy of our approach compared to baselines in terms of communication costs and inference speed.Comment: 9 pages, 2 figures, Accepted on ICASSP 202
    • …
    corecore