69 research outputs found
Helical structures from an isotropic homopolymer model
We present Monte Carlo simulation results for square-well homopolymers at a
series of bond lengths. Although the model contains only isotropic pairwise
interactions, under appropriate conditions this system shows spontaneous chiral
symmetry breaking, where the chain exists in either a left- or a right-handed
helical structure. We investigate how this behavior depends upon the ratio
between bond length and monomer radius.Comment: 10 pages, 3 figures, accepted for publication by Physical Review
Letter
Effects of Friction and Disorder on the Quasi-Static Response of Granular Solids to a Localized Force
The response to a localized force provides a sensitive test for different
models of stress transmission in granular solids. The elasto-plastic models
traditionally used by engineers have been challenged by theoretical and
experimental results which suggest a wave-like (hyperbolic) propagation of the
stress, as opposed to the elliptic equations of static elasticity. Numerical
simulations of two-dimensional granular systems subject to a localized external
force are employed to examine the nature of stress transmission in these
systems as a function of the magnitude of the applied force, the frictional
parameters and the disorder (polydispersity). The results indicate that in
large systems (typically considered by engineers), the response is close to
that predicted by isotropic elasticity whereas the response of small systems
(or when sufficiently large forces are applied) is strongly anisotropic. In the
latter case the applied force induces changes in the contact network
accompanied by frictional sliding. The larger the coefficient of static
friction, the more extended is the range of forces for which the response is
elastic and the smaller the anisotropy. Increasing the degree of polydispersity
(for the range studied, up to 25%) decreases the range of elastic response.
This article is an extension of a previously published letter [1].Comment: 21 pages (PDFLaTeX), 24 figures (some of them bitmapped to save
space); submitted to Phys. Rev.
Non-additive effects on the properties and fluid phase equilibria of water
Abstract not available
Fully a priori prediction of the vapor-liquid equilibria of Ar, Kr, and Xe from ab initio two-body plus three-body interatomic potentials
Fully a priori predictions are reported for the vapor-liquid equilibria (VLE) properties of Ar, Kr, and Xe using molecular simulation techniques and recently developed ab initio two-body interatomic potentials. Simulation data are reported at temperatures from near the triple point to close to the critical point. The two-body ab initio potentials exaggerate the size of the experimental VLE temperature-density envelope, overestimating the critical temperature and underestimating the vapor pressure. These deficiencies can be partially rectified by the addition of a density-dependent three-body term. At many temperatures, the ab initio + three-body simulations for Kr and Xe predict the vapor pressure to an accuracy that is close to experimental uncertainty. The predicted VLE coexisting densities for Xe almost match experimental data. The improvement with experiment is also reflected in more accurate enthalpies of vaporization. The fully a priori predictions for all of the VLE properties of either Kr or Xe are noticeably superior to simulations using the Lennard-Jones potential
Analytic or non-analytic? the state point dependence of classical fluids under shear
Abstract not available
- …