48 research outputs found
A translational approach to studying preterm labour
Preterm labour continues to be a major contributor to neonatal and infant morbidity. Recent data from the USA indicate that the number of preterm deliveries (including those associated with preterm labour) has risen in the last 20 years by 30%. This increase is despite considerable efforts to introduce new therapies for the prevention and treatment of preterm labour and highlights the need to assess research in this area from a fresh perspective. In this paper we discuss i) the limitations of our knowledge concerning prediction, prevention and treatment of preterm labour and ii) future multidisciplinary strategies for improving our approach
Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study
BACKGROUND: Chorioamnionitis is a common underlying cause of preterm birth (PTB). It is hypothesised that polymorphisms in immunoregulatory genes influence the host response to infection and subsequent preterm birth. The relationship between histologic chorioamnionitis and 22 single nucleotide polymorphisms in 11 immunoregulatory genes was examined in a case-control study. METHODS: Placentas of 181 Caucasoid women with spontaneous PTB prior to 35 weeks were examined for histologic chorioamnionitis. Polymorphisms in genes IL1A, IL1B, IL1RN, IL1R1, tumour necrosis factor (TNF), IL4, IL6, IL10, transforming growth factor beta-1 (TGFB1), Fas (TNFRSF6), and mannose-binding lectin (MBL2) were genotyped by polymerase chain reaction and sequence specific primers. Multivariable logistic regression including demographic and genetic variables and Kaplan-Meier survival analyses of genotype frequencies and pregnancy outcome were performed. RESULTS: Sixty-nine (34%) women had histologic evidence of acute chorioamnionitis. Carriage of the IL10-1082A/-819T/592A (ATA) haplotype [Multivariable Odds ratio (MOR) 1.9, P = 0.05] and MBL2 codon 54Asp allele (MOR 2.0, P = 0.04), were positively associated with chorioamnionitis, while the TNFRSF6-1377A/-670G (AG) haplotype (MOR 0.4, P = 0.03) and homozygosity for TGFB1-800G/509T (GT) haplotype (MOR 0.2, P = 0.04) were negatively associated. CONCLUSION: These findings demonstrate that polymorphisms in immunoregulatory genes IL10, MBL2, TNFRSF6 and TGFB1 may influence susceptibility to chorioamnionitis
The Association between Intrauterine Inflammation and Spontaneous Vaginal Delivery at Term: A Cross-Sectional Study
BACKGROUND:Different factors contribute to the onset of labor at term. In animal models onset of labor is characterized by an inflammatory response. The role of intrauterine inflammation, although implicated in preterm birth, is not yet established in human term labor. We hypothesized that intrauterine inflammation at term is associated with spontaneous onset of labor. METHODS/RESULTS:In two large urban hospitals in the Netherlands, a cross-sectional study of spontaneous onset term vaginal deliveries and elective caesarean sections (CS), without signs of labor, was carried out. Placentas and amniotic fluid samples were collected during labor and/or at delivery. Histological signs of placenta inflammation were determined. Amniotic fluid proinflammatory cytokine concentrations were measured using ELISA. A total of 375 women were included. In term vaginal deliveries, more signs of intrauterine inflammation were found than in elective CS: the prevalence of chorioamnionitis was higher (18 vs 4%, p = 0.02) and amniotic fluid concentration of IL-6 was higher (3.1 vs 0.37 ng/mL, p<0.001). Similar results were obtained for IL-8 (10.93 vs 0.96 ng/mL, p<0.001) and percentage of detectable TNF-alpha (50 vs 4%, p<0.001). CONCLUSIONS:This large cross-sectional study shows that spontaneous term delivery is characterized by histopathological signs of placenta inflammation and increased amniotic fluid proinflammatory cytokines
Inflammation of the fetal ovine skin following in utero exposure to Ureaplasma parvum
There is increasing evidence linking in utero infection and inflammation to preterm birth. Many commensal urogenital tract microorganisms, including the Mycoplasmas and Ureaplasmas, are commonly detected in association with preterm birth. Using an ovine model of sterile fetal inflammation, we demonstrated previously that the fetal skin generates a robust inflammatory response following in utero exposure to lipopolysaccharides from Escherichia coli. The fetal skin’s response to colonization of the amniotic fluid by viable microorganisms remains unstudied. We hypothesised that in utero infection with Ureaplasma parvum serovar 3 would induce a proinflammatory response in the fetal skin. We found that (1) cultured fetal keratinocytes (the primary cellular constituent of the epidermis) respond to U. parvum exposure in vitro by increasing the expression of the chemotactant monocyte chemoattractant protein 1 (MCP-1) but not interleukin 1β (IL-1β), IL-6, IL-8, or tumor necrosis factor-α (TNF-α); (2) the fetal skin’s response to 7 days of U. parvum exposure is characterized by elevated expression of MCP-1, TNF-α, and IL-10; and (3) the magnitude of inflammatory cytokine/chemokine expression in the fetal skin is dependent on the duration of U parvum exposure. These novel findings provide further support for the role of the fetal skin in the development of fetal inflammation and the preterm birth that may follow