83 research outputs found

    Inverse Preference Learning: Preference-based RL without a Reward Function

    Full text link
    Reward functions are difficult to design and often hard to align with human intent. Preference-based Reinforcement Learning (RL) algorithms address these problems by learning reward functions from human feedback. However, the majority of preference-based RL methods na\"ively combine supervised reward models with off-the-shelf RL algorithms. Contemporary approaches have sought to improve performance and query complexity by using larger and more complex reward architectures such as transformers. Instead of using highly complex architectures, we develop a new and parameter-efficient algorithm, Inverse Preference Learning (IPL), specifically designed for learning from offline preference data. Our key insight is that for a fixed policy, the QQ-function encodes all information about the reward function, effectively making them interchangeable. Using this insight, we completely eliminate the need for a learned reward function. Our resulting algorithm is simpler and more parameter-efficient. Across a suite of continuous control and robotics benchmarks, IPL attains competitive performance compared to more complex approaches that leverage transformer-based and non-Markovian reward functions while having fewer algorithmic hyperparameters and learned network parameters. Our code is publicly released

    Altruistic Autonomy: Beating Congestion on Shared Roads

    Full text link
    Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion, both by increasing network throughput and by enabling a social planner to incentivize users of autonomous vehicles to take longer routes that can alleviate congestion on more direct roads. We formalize the effects of altruistic autonomy on roads shared between human drivers and autonomous vehicles. In this work, we develop a formal model of road congestion on shared roads based on the fundamental diagram of traffic. We consider a network of parallel roads and provide algorithms that compute optimal equilibria that are robust to additional unforeseen demand. We further plan for optimal routings when users have varying degrees of altruism. We find that even with arbitrarily small altruism, total latency can be unboundedly better than without altruism, and that the best selfish equilibrium can be unboundedly better than the worst selfish equilibrium. We validate our theoretical results through microscopic traffic simulations and show average latency decrease of a factor of 4 from worst-case selfish equilibrium to the optimal equilibrium when autonomous vehicles are altruistic.Comment: Accepted to Workshop on the Algorithmic Foundations of Robotics (WAFR) 201
    • …
    corecore