15 research outputs found
The effectiveness of a clinically integrated e-learning course in evidence-based medicine: A cluster randomised controlled trial
BACKGROUND: To evaluate the educational effects of a clinically integrated e-learning course for teaching basic evidence-based medicine (EBM) among postgraduates compared to a traditional lecture-based course of equivalent content. METHODS: We conducted a cluster randomised controlled trial in the Netherlands and the UK involving postgraduate trainees in six obstetrics and gynaecology departments. Outcomes (knowledge gain and change in attitude towards EBM) were compared between the clinically integrated e-learning course (intervention) and the traditional lecture based course (control). We measured change from pre- to post-intervention scores using a validated questionnaire assessing knowledge (primary outcome) and attitudes (secondary outcome). RESULTS: There were six clusters involving teaching of 61 postgraduate trainees (28 in the intervention and 33 in the control group). The intervention group achieved slightly higher scores for knowledge gain compared to the control, but these results were not statistically significant (difference in knowledge gain: 3.5 points, 95% CI -2.7 to 9.8, p = 0.27). The attitudinal changes were similar for both groups. CONCLUSION: A clinically integrated e-learning course was at least as effective as a traditional lecture based course and was well accepted. Being less costly than traditional teaching and allowing for more independent learning through materials that can be easily updated, there is a place for incorporating e-learning into postgraduate EBM curricula that offer on-the-job training for just-in-time learning. TRIAL REGISTRATION: Trial registration number: ACTRN12609000022268
On-the-job evidence-based medicine training for clinician-scientists of the next generation
Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes
On-the-job evidence-based medicine training for clinician-scientists of the next generation
Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes
Is evidence-based medicine teaching and learning directed at improving practice?
Introduction
Evidence-based medicine (EBM) has evolved as a key skill to be taught and learnt in medical education. There are several methods for teaching EBM1–3 but the aim of teaching should be to impart knowledge, attitudes and skills to improve clinician performance and patient care. Without an adequate assessment it is difficult to know whether a teaching intervention has the desired effect. How frequently is teaching directed to achieve these objectives and how good are we at measuring learning achievement? An overview of assessments used in studies evaluating outcomes of EBM teaching was undertaken to address this question.
There are many publications on the outcomes of EBM teaching but little has been written about the coverage of educational domains in tools used for assessing outcomes. A systematic review4,5 on this subject failed to examine if studies covered established educational domains grounded in Bloom's taxonomy6 and Kirkpatrick's hierarchy,7 which allow examination of the impact of teaching on a sliding scale from a simple record of attendance to application of evidence in practice leading to improvements in health outcomes. We evaluated how existing EBM assessments rank on these scales. We also examined measurement quality of tools in terms of validity
Tips for teaching evidence-based medicine in a clinical setting: lessons from adult learning theory. Part one
Evidence-based medicine (EBM) is an indispensable tool in clinical practice. Teaching and training of EBM to trainee clinicians is patchy and fragmented at its best. Clinically integrated teaching of EBM is more likely to bring about changes in skills, attitudes and behaviour. Provision of evidence-based health care is the most ethical way to practice, as it integrates up-to-date, patient-oriented research into the clinical decision making process, thus improving patients' outcomes. In this article, we aim to dispel the myth that EBM is an academic and statistical exercise removed from practice by providing practical tips for teaching the minimum skills required to ask questions and critically identify and appraise the evidence and presenting an approach to teaching EBM within the existing clinical and educational training infrastructure