27 research outputs found

    Explanation of IceCube spectrum with ν→3ν\nu\rightarrow 3 \nu neutrino splitting in a ν\nu2HDM model

    Full text link
    A single power law flux spectrum of high energy neutrinos does not adequately explain the entire 60 TeV to 10 PeV event spectrum observed at IceCube, specially the excess of PeV events and the lack of Glashow resonance events expected at 6.3 PeV cannot be simultaneously explained by a single power law source neutrino flux. Here we consider a model of neutrino splitting ν→3ν\nu\rightarrow 3 \nu over cosmological distances. Starting from a single power-law spectrum expected from the astrophysical sources, we show that by adjusting the decay length and spectral index one can give a better fit to the observed IceCube events over the entire 1 TeV -6 PeV, compared to that from a single power spectrum. For ν→3ν\nu\rightarrow 3\nu neutrino splitting, the flavor ratios of the daughter neutrinos are different from the standard oscillation or invisible decay cases and can be used as a test of this scenario. We propose a ν\nu2HDM where a light Higgs (∼0.1\sim 0.1~eV) mediates neutrino splitting via a one-loop box diagram. The split in the masses of the scalars in the doublet gives a large contribution to the oblique T parameter which is severely constrained. This constraint from the S,T,U oblique parameters can be evaded by the introduction of an extra vector lepton doublet and with mass ∼200\sim 200 GeV.Comment: 19 pages, 8 figures, Journal version to appear in JHE

    Lepton Portal Limit of Inert Higgs Doublet Dark Matter with Radiative Neutrino Mass

    Full text link
    We study an extension of the Inert Higgs Doublet Model (IHDM) by three copies of right handed neutrinos and heavy charged leptons such that both the inert Higgs doublet and the heavy fermions are odd under the Z2Z_2 symmetry of the model. The neutrino masses are generated at one loop in the scotogenic fashion. Assuming the neutral scalar of the inert Higgs to be the dark matter candidate, we particularly look into the region of parameter space where dark matter relic abundance is primarily governed by the inert Higgs coupling with the leptons. This corresponds to tiny Higgs portal coupling of dark matter as well as large mass splitting within different components of the inert Higgs doublet suppressing the coannihilations. Such lepton portal couplings can still produce the correct relic abundance even if the Higgs portal couplings are arbitrarily small. Such tiny Higgs portal couplings may be responsible for suppressed dark matter nucleon cross section as well as tiny invisible branching ratio of the standard model Higgs, to be probed at ongoing and future experiments. We also briefly discuss the collider implications of such a scenario.Comment: 10 pages, 7 figure

    Can Dark Matter be an artifact of extended theories of gravity?

    Full text link
    In this article, we propose different background models of extended theories of gravity, which are minimally coupled to the SM fields, to explain the possibility of genesis of dark matter without affecting the SM particle sector. We modify the gravity sector by allowing quantum corrections motivated from (1) local f(R)f(R) gravity and (2) non-minimally coupled gravity with SM sector and dilaton field. Next we apply conformal transformation on the metric to transform the action back to the Einstein frame. We also show that an effective theory constructed from these extended theories of gravity and SM sector looks exactly the same. Using the relic constraint observed by Planck 2015, we constrain the scale of the effective field theory (ΛUV\Lambda_{UV}) as well as the dark matter mass (MM). We consider two cases- (1) light dark matter (LDM) and (2) heavy dark matter (HDM), and deduce upper bounds on thermally averaged cross section of dark matter annihilating to SM particles. Further we show that our model naturally incorporates self interactions of dark matter. Using these self interactions, we derive the constraints on the parameters of the (1) local f(R)f(R) gravity and (2) non-minimally coupled gravity from dark matter self interaction. Finally, we propose some different UV complete models from a particle physics point of view, which can give rise to the same effective theory that we have deduced from extended theories of gravity.Comment: 45 pages, 8 figures, Accepted for publication in European Physical Journal
    corecore