17 research outputs found
The t Complex Distorter 2 Candidate Gene, Dnahc8, Encodes at Least Two Testis-Specific Axonemal Dynein Heavy Chains That Differ Extensively at Their Amino and Carboxyl Termini
AbstractHomozygosity for the t haplotype allele of the testis-specifically expressed axonemal dynein heavy chain (axDHC) gene, Dnahc8, has been linked to male sterility resulting from aberrant sperm motility. However, the near absence of Dnahc8 expression has been associated with male sterility resulting from an early breakdown in sperm flagellar development. Although axDHCs are integral participants in flagellar motility, a role in flagellar morphogenesis has never been attributed to a member of this highly conserved gene family. To gain a better understanding of this presumed novel role for Dnahc8, we have studied the organization and expression of full-length Dnahc8+ and Dnahc8t transcripts. Our results demonstrate the existence of at least two alternatively spliced, testis-specific Dnahc8 mRNAs transcribed from both the + and t alleles. A highly expressed isoform encodes a protein with significant homology nearly throughout to the γ heavy chain of the Chlamydomonas axonemal outer arm dynein, while a more poorly expressed isoform codes for a protein whose sequence diverges significantly from that of other axDHCs at both its N and C termini. While in situ hybridization studies demonstrate that both mRNA species accumulate exclusively in mid to late spermatocytes, each isoform shows spatial independence. Additional experiments demonstrate the existence of a testis-expressed mRNA with no significant open reading frame, a portion of which is antisense to the 5′-untranslated region of the highly divergent Dnahc8 isoform. The cumulative data imply that Dnahc8 may have acquired functional plasticity in the testis through the tightly controlled expression of both typical and unusual isoforms
Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development
The mouse t complex distorter/sterility candidate, Dnahc8, expresses a γ-type axonemal dynein heavy chain isoform confined to the principal piece of the sperm tail
AbstractHeterozygosity for a t haplotype (t) in male mice results in distorted transmission (TRD) of the t-bearing chromosome 17 homolog to their offspring. However, homozygosity for t causes male sterility, thus limiting the spread of t through the population at large. The Ca2+-dependent sperm tail curvature phenotypes, “fishhook”, where abnormally high levels of sperm exhibit sharp bends in the midpiece, and “curlicue”, where motile sperm exhibit a chronic negative curving of the entire tail, have been tightly linked to t-associated male TRD and sterility traits, respectively. Genetic studies have indicated that homozygosity for the t allele of Dnahc8, an axonemal γ-type dynein heavy chain (γDHC) gene, is partially responsible for expression of “curlicue”; however, its involvement in “fishhook”/TRD, if any, is unknown. Here we report that the major isoform of DNAHC8 is copiously expressed, carries an extended N-terminus and full-length C-terminus, and is stable and equally abundant in both testis and sperm from +/+ and t/t animals. By in silico analysis we also demonstrate that at least three of the seventeen DNAHC8t mutations at highly conserved positions in wild-type DHCs may be capable of substantially altering normal DNAHC8 function. Interestingly, DNAHC8 is confined to the principal piece of the sperm tail. The combined results of this study suggest possible mechanisms of DNAHC8t dysfunction and involvement in “curlicue”, and support the hypothesis that “curlicue” is a multigenic phenomenon. They also demonstrate that the accelerated “fishhook” phenotype of sperm from +/t males is not directly linked to DNAHC8t dysfunction
SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress
Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1
Cellular mechanisms promoting cachexia and how they are opposed by sirtuins
Many chronic diseases are associated with unintentional loss of body weight, which is termed as cachexia. Cachexia is a complex multifactorial syndrome associated with the underlying primary disease, and characterized by loss of skeletal muscle with or without loss of fat tissue. Patients with cachexia face dire symptoms like dyspnea, fatigue, edema, exercise-intolerance and low responsiveness to medical therapy, which worsen quality of life. Since cachexia is not a stand-alone disorder, treating primary disease, such as cancer, takes precedence for the physician, and it remains mostly a neglected illness. Existing clinical trials have demonstrated limited success mostly because of their mono-therapeutic approach and late detection of the syndrome. In order to conquer cachexia, it is essential to identify as many molecular targets as possible using the latest technologies we have at our disposal. In this review, we have discussed different aspects of cachexia, which include various disease settings, active molecular pathways and recent novel advances made in this field to understand consequences of this illness. We also discuss roles of the sirtuins, the NAD+-dependent lysine deacetylases, microRNAs, certain dietary options and epigenetic drugs as potential approaches, which can be used to tackle cachexia as early as possible in its course.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Recommended from our members
Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development.</p
SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70▿
There are seven SIRT isoforms in mammals, with diverse biological functions including gene regulation, metabolism, and apoptosis. Among them, SIRT3 is the only sirtuin whose increased expression has been shown to correlate with an extended life span in humans. In this study, we examined the role of SIRT3 in murine cardiomyocytes. We found that SIRT3 is a stress-responsive deacetylase and that its increased expression protects myocytes from genotoxic and oxidative stress-mediated cell death. We show that, like human SIRT3, mouse SIRT3 is expressed in two forms, a ∼44-kDa long form and a ∼28-kDa short form. Whereas the long form is localized in the mitochondria, nucleus, and cytoplasm, the short form is localized exclusively in the mitochondria of cardiomyocytes. During stress, SIRT3 levels are increased not only in mitochondria but also in the nuclei of cardiomyocytes. We also identified Ku70 as a new target of SIRT3. SIRT3 physically binds to Ku70 and deacetylates it, and this promotes interaction of Ku70 with the proapoptotic protein Bax. Thus, under stress conditions, increased expression of SIRT3 protects cardiomyocytes, in part by hindering the translocation of Bax to mitochondria. These studies underscore an essential role of SIRT3 in the survival of cardiomyocytes in stress situations
The miR-130a target site in the FOG-2 3′UTR is required for translational repression.
<p>In (A), a schematic of the constructs used to evaluate the function of the conserved region of the FOG-2 3′ UTR. In (B), NIH 3T3 fibroblasts were transfected with the constructs shown above along with pVRβgal. Forty-eight hours post transfection, cell lysates were assayed for luciferase activity and normalized to β-galactosidase activity. Results reported are the mean±S.E.M. (n = 8). In (C), northern analysis of 10 µg total RNA from transfected fibroblasts from (B) using a probe specific to the luciferase coding region (above) or β-galactosidase (below). In (D), primary neonatal cardiomyocytes were transfected with pVRβgal and a luciferase reporter containing the 3′UTR of FOG-2 or the ΔA 3′UTR mutation. Forty-eight hours after transfection, cells were assayed for luciferase and β-galactosidase activity. Results are reported as the mean normalized luciferase activity±S.E.M. (n = 20). In (E), NIH 3T3 fibroblasts were transfected with a luciferase reporter containing the 3′ UTR of FOG-2 (columns 1–3) or the ΔA mutation (columns 4 & 5) in the absence (columns 1 & 4) or presence of increasing amounts of 2′-O-methyl oligonucleotide (columns 2, 3, 5). Forty-eight hours post transfection, cell lysates were assayed for luciferase activity and normalized to β-galactosidase activity. Results reported are the mean±S.E.M. (n = 7). ‘*’ indicates a statistically significant difference (p<0.01 )</p
The 3′ UTR of FOG-2 inhibits mRNA translation.
<p>In (A), a schematic of the expression vector pRL and its derivative containing the FOG-2 3′UTR in place of the SV40 polyadenylation sequence. In (B), NIH 3T3 fibroblasts were transfected with the constructs shown above along with pVRβgal. Forty-eight hours post transfection, cell lysates were assayed for luciferase activity and normalized to β-galactosidase activity. Results reported are the mean±S.E.M. (n = 11). In (C), northern analysis of 20 µg total RNA from transfected fibroblasts from (B) using a probe specific to the luciferase coding region (above) or β-galactosidase (below). ‘*’ indicates a statistically significant difference (p<0.0001).</p