39 research outputs found

    Unifying Markov Properties for Graphical Models

    Get PDF
    Several types of graphs with different conditional independence interpretations --- also known as Markov properties --- have been proposed and used in graphical models. In this paper we unify these Markov properties by introducing a class of graphs with four types of edges --- lines, arrows, arcs, and dotted lines --- and a single separation criterion. We show that independence structures defined by this class specialize to each of the previously defined cases, when suitable subclasses of graphs are considered. In addition, we define a pairwise Markov property for the subclass of chain mixed graphs which includes chain graphs with the LWF interpretation, as well as summary graphs (and consequently ancestral graphs). We prove the equivalence of this pairwise Markov property to the global Markov property for compositional graphoid independence models.Comment: 31 Pages, 6 figures, 1 tabl

    Markov properties for mixed graphs

    Get PDF
    In this paper, we unify the Markov theory of a variety of different types of graphs used in graphical Markov models by introducing the class of loopless mixed graphs, and show that all independence models induced by mm-separation on such graphs are compositional graphoids. We focus in particular on the subclass of ribbonless graphs which as special cases include undirected graphs, bidirected graphs, and directed acyclic graphs, as well as ancestral graphs and summary graphs. We define maximality of such graphs as well as a pairwise and a global Markov property. We prove that the global and pairwise Markov properties of a maximal ribbonless graph are equivalent for any independence model that is a compositional graphoid.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ502 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Markov Properties of Discrete Determinantal Point Processes

    Get PDF
    Determinantal point processes (DPPs) are probabilistic models for repulsion. When used to represent the occurrence of random subsets of a finite base set, DPPs allow to model global negative associations in a mathematically elegant and direct way. Discrete DPPs have become popular and computationally tractable models for solving several machine learning tasks that require the selection of diverse objects, and have been successfully applied in numerous real-life problems. Despite their popularity, the statistical properties of such models have not been adequately explored. In this note, we derive the Markov properties of discrete DPPs and show how they can be expressed using graphical models.Comment: 9 pages, 1 figur

    On Finite Exchangeability and Conditional Independence

    Get PDF
    We study the independence structure of finitely exchangeable distributions over random vectors and random networks. In particular, we provide necessary and sufficient conditions for an exchangeable vector so that its elements are completely independent or completely dependent. We also provide a sufficient condition for an exchangeable vector so that its elements are marginally independent. We then generalize these results and conditions for exchangeable random networks. In this case, it is demonstrated that the situation is more complex. We show that the independence structure of exchangeable random networks lies in one of six regimes that are two-fold dual to one another, represented by undirected and bidirected independence graphs in graphical model sense with graphs that are complement of each other. In addition, under certain additional assumptions, we provide necessary and sufficient conditions for the exchangeable network distributions to be faithful to each of these graphs.Comment: 25 pages, 2 figure

    Stable mixed graphs

    Full text link
    In this paper, we study classes of graphs with three types of edges that capture the modified independence structure of a directed acyclic graph (DAG) after marginalisation over unobserved variables and conditioning on selection variables using the mm-separation criterion. These include MC, summary, and ancestral graphs. As a modification of MC graphs, we define the class of ribbonless graphs (RGs) that permits the use of the mm-separation criterion. RGs contain summary and ancestral graphs as subclasses, and each RG can be generated by a DAG after marginalisation and conditioning. We derive simple algorithms to generate RGs, from given DAGs or RGs, and also to generate summary and ancestral graphs in a simple way by further extension of the RG-generating algorithm. This enables us to develop a parallel theory on these three classes and to study the relationships between them as well as the use of each class.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ454 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Sequences of regressions and their independences

    Full text link
    Ordered sequences of univariate or multivariate regressions provide statistical models for analysing data from randomized, possibly sequential interventions, from cohort or multi-wave panel studies, but also from cross-sectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, derive criteria to read all implied independences of a regression graph and prove criteria for Markov equivalence that is to judge whether two different graphs imply the same set of independence statements. Knowledge of Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.Comment: 43 pages with 17 figures The manuscript is to appear as an invited discussion paper in the journal TES

    On Exchangeability in Network Models

    Get PDF
    We derive representation theorems for exchangeable distributions on finite and infinite graphs using elementary arguments based on geometric and graph-theoretic concepts. Our results elucidate some of the key differences, and their implications, between statistical network models that are finitely exchangeable and models that define a consistent sequence of probability distributions on graphs of increasing size.Comment: Dedicated to the memory of Steve Fienber

    Axiomatization of Interventional Probability Distributions

    Full text link
    Causal intervention is an essential tool in causal inference. It is axiomatized under the rules of do-calculus in the case of structure causal models. We provide simple axiomatizations for families of probability distributions to be different types of interventional distributions. Our axiomatizations neatly lead to a simple and clear theory of causality that has several advantages: it does not need to make use of any modeling assumptions such as those imposed by structural causal models; it only relies on interventions on single variables; it includes most cases with latent variables and causal cycles; and more importantly, it does not assume the existence of an underlying true causal graph as we do not take it as the primitive object--in fact, a causal graph is derived as a by-product of our theory. We show that, under our axiomatizations, the intervened distributions are Markovian to the defined intervened causal graphs, and an observed joint probability distribution is Markovian to the obtained causal graph; these results are consistent with the case of structural causal models, and as a result, the existing theory of causal inference applies. We also show that a large class of natural structural causal models satisfy the theory presented here. We note that the aim of this paper is axiomatization of interventional families, which is subtly different from "causal modeling."Comment: 39 pages, 4 figure
    corecore