65 research outputs found
Transgenerational Effects of Heavy Metal Pollution on Immune Defense of the Blow Fly Protophormia terraenovae
Recently environmental conditions during early parental development have been found to have transgenerational effects on immunity and other condition-dependent traits. However, potential transgenerational effects of heavy metal pollution have not previously been studied. Here we show that direct exposure to heavy metal (copper) upregulates the immune system of the blow fly, Protophormia terraenovae, reared in copper contaminated food. In the second experiment, to test transgenerational effects of heavy metal, the parental generation of the P. terraenovae was reared in food supplemented with copper, and the immunocompetence of their offspring, reared on uncontaminated food, was measured. Copper concentration used in this study was, in the preliminary test, found to have no effect on mortality of the flies. Immunity was tested on the imago stage by measuring encapsulation response against an artificial antigen, nylon monofilament. We found that exposure to copper during the parental development stages through the larval diet resulted in immune responses that were still apparent in the next generation that was not exposed to the heavy metal. We found that individuals reared on copper-contaminated food developed more slowly compared with those reared on uncontaminated food. The treatment groups did not differ in their dry body mass. However, parental exposure to copper did not have an effect on the development time or body mass of their offspring. Our study suggests that heavy metal pollution has positive feedback effect on encapsulation response through generations which multiplies the harmful effects of heavy metal pollution in following generations
The effect of parental rearing conditions on offspring life history in Anopheles stephensi
Background
The environmental conditions experienced by parents are increasingly recognized to impact the success of offspring. Little is known on the presence of such parental effects in Anopheles. If present, parental effects could influence mosquito breeding programmes, some malaria control measures and have epidemiological and evolutionary consequences.
Methods
The presence of parental effects on offspring emergence time, size, survival, blood meal size and fecundity in laboratory reared An. stephensi were tested.
Results
Parental rearing conditions did not influence the time taken for offspring to emerge, or their size or survival as adults. However, parental effects were influential in determining the fecundity of daughters. Counter-intuitively, daughters of parents reared in low food conditions produced larger egg clutches than daughters of parents reared in high food conditions. Offspring reared in low food conditions took larger blood meals if their parents had also experienced a low food environment.
Conclusion
So far as we are aware, this is the first evidence of parental effects on progeny in Anophele
Conidiation Color Mutants of Aspergillus fumigatus Are Highly Pathogenic to the Heterologous Insect Host Galleria mellonella
The greater wax moth Galleria mellonella has been widely used as
a heterologous host for a number of fungal pathogens including Candida
albicans and Cryptococcus neoformans. A positive
correlation in pathogenicity of these yeasts in this insect model and animal
models has been observed. However, very few studies have evaluated the
possibility of applying this heterologous insect model to investigate virulence
traits of the filamentous fungal pathogen Aspergillus
fumigatus, the leading cause of invasive aspergillosis. Here, we have
examined the impact of mutations in genes involved in melanin biosynthesis on
the pathogenicity of A. fumigatus in the G.
mellonella model. Melanization in A. fumigatus confers
bluish-grey color to conidia and is a known virulence factor in mammal models.
Surprisingly, conidial color mutants in B5233 background that have deletions in
the defined six-gene cluster required for DHN-melanin biosynthesis caused
enhanced insect mortality compared to the parent strain. To further examine and
confirm the relationship between melanization defects and enhanced virulence in
the wax moth model, we performed random insertional mutagenesis in the Af293
genetic background to isolate mutants producing altered conidia colors. Strains
producing conidia of previously identified colors and of novel colors were
isolated. Interestingly, these color mutants displayed a higher level of
pathogenicity in the insect model compared to the wild type. Although some of
the more virulent color mutants showed increased resistance to hydrogen
peroxide, overall phenotypic characterizations including secondary metabolite
production, metalloproteinase activity, and germination rate did not reveal a
general mechanism accountable for the enhanced virulence of these color mutants
observed in the insect model. Our observations indicate instead, that
exacerbated immune response of the wax moth induced by increased exposure of
PAMPs (pathogen-associated molecular patterns) may cause self-damage that
results in increased mortality of larvae infected with the color mutants. The
current study underscores the limitations of using this insect model for
inferring the pathogenic potential of A. fumigatus strains in
mammals, but also points to the importance of understanding the innate immunity
of the insect host in providing insights into the pathogenicity level of
different fungal strains in this model. Additionally, our observations that
melanization defective color mutants demonstrate increased virulence in the
insect wax moth, suggest the potential of using melanization defective mutants
of native insect fungal pathogens in the biological control of insect
populations
- …