16 research outputs found

    Impurity emission characteristics of long pulse discharges in Large Helical Device

    Get PDF
    Line spectra from intrinsic impurity ions have been monitored during the three kinds of long-pulse discharges (ICH, ECH, NBI). Constant emission from the iron impurity shows no preferential accumulation of iron ion during the long-pulse operations. Stable Doppler ion temperature has been also measured from Fe XX, C V and C III spectra

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Impurity Transport Study with TESPEL Injection and Simulation

    No full text

    Impurity Transport Study with TESPEL Injection and Simulation

    Get PDF
    Impurity behaviors in LHD are studied by a Tracer-encapsulated Solid Pellet (TESPEL) injection. By containing multiple tracers in a TESPEL, the different tracer species have been compared simultaneously under the same plasma condition. The density disturbance on the bulk plasma by TESPEL is typically less than 10 %. The amount of the tracer particles deposited locally inside a plasma is about a few 1017 particles which is smaller than that of the bulk plasma by a factor of three orders of magnitude. Triple tracers, V, Mn and Co are used, because the charges of nuclei of intrinsic impurities, Cr and Fe are in between those of the tracers. The impurity confinement behavior depends substantially on the electron density. In case of the density higher than ne = 5 × 1019 m?3, the tracer impurity in the plasma core was kept for a long time, while it decays in order of 500 ms in the medium density case. Such temporal behavior is compared with a STRAHL simulation code assuming diffusion coefficient and convection. The general behavior fits well with the emissivity value integrated along the sight line

    Plasma Diagnostics with Tracer-Encapsulated Solid Pellet

    Get PDF
    The diagnostics method of a tracer-encapsulated solid pellet (TESPEL) has been developed. TESPEL consists of polystyrene as an outer shell and of specific material as a tracer in the core. Owing to the advantages of the TESPEL, the following results have been successfully obtained: (1) distinctive different feature of impurity transport between the plateau and Pfirsch-Schlüter regimes depending on the impurity source location which is analyzed with the STRAHL code, (2) specific feature of a non-local thermal transport such as abrupt increase of electron temperature in the plasma core in case of plasma cooling in the plasma periphery due to a small TESPEL injection, (3) spatially resolved energy distribution of the high energy particles obtained by a pellet charge exchange method, (4) longer impurity containment inside the magnetic island which is observed by depositing the tracers in the magnetic island by means of the TESPEL, and (5) identification of new spectral lines using interested atoms contained in the core of the TESPEL
    corecore