29 research outputs found

    Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

    Full text link
    The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 ±\pm 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core (ρR\rho R \sim 0.1 g/cm2^2). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-KαK_\alpha imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2\% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core (ρR\rho R \sim 0.4 g/cm2^2) leads to much higher laser-to-core coupling (>> 15%), this is much higher than that achieved by the current scheme

    Fabrication of high-concentration Cu-doped deuterated targets for fast ignition experiments

    Get PDF
    In high-energy-density physics, including inertial fusion energy using high-power lasers, doping tracer atoms and deuteration of target materials play an important role in diagnosis. For example, a low-concentration Cu dopant acts as an x-ray source for electron temperature detection while a deuterium dopant acts as a neutron source for fusion reaction detection. However, the simultaneous achievement of Cu doping, a deuterated polymer, mechanical toughness and chemical robustness during the fabrication process is not so simple. In this study, we report the successful fabrication of a Cu-doped deuterated target. The obtained samples were characterized by inductively coupled plasma optical emission spectrometry, differential scanning calorimetry and Fourier transform infrared spectroscopy. Simultaneous measurements of Cu K-shell x-ray emission and beam fusion neutrons were demonstrated using a petawatt laser at Osaka University.Ikeda T., Kaneyasu Y., Hosokawa H., et al. Fabrication of high-concentration Cu-doped deuterated targets for fast ignition experiments. Nuclear Fusion 63, 016010 (2023); https://doi.org/10.1088/1741-4326/aca2ba

    Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system

    Full text link
    A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.Kojima S., Abe Y., Miura E., et al. Demonstration of a spherical plasma mirror for the counter-propagating kilojoule-class petawatt LFEX laser system. Optics Express 30, 43491 (2022); https://doi.org/10.1364/oe.475945

    Hot Electron Spectra in Plain, Cone and Integrated Targets for FIREX-I using Electron Spectrometer

    Get PDF
    The traditional fast ignition scheme is that a compressed core created by an imploding laser is auxiliary heated and ignited by the hot electrons (produced by a short pulse laser guided through the cone). Here, the most suitable target design for fast ignition can be searched for by comparison of the spectra between varied targets using an electron spectrometer

    Fabrication of high-concentration Cu-doped deuterated targets for fast ignition experiments

    Get PDF
    先端科学・社会共創推進機構In high-energy-density physics, including inertial fusion energy using high-power lasers, doping tracer atoms and deuteration of target materials play an important role in diagnosis. For example, a low-concentration Cu dopant acts as an x-ray source for electron temperature detection while a deuterium dopant acts as a neutron source for fusion reaction detection. However, the simultaneous achievement of Cu doping, a deuterated polymer, mechanical toughness and chemical robustness during the fabrication process is not so simple. In this study, we report the successful fabrication of a Cu-doped deuterated target. The obtained samples were characterized by inductively coupled plasma optical emission spectrometry, differential scanning calorimetry and Fourier transform infrared spectroscopy. Simultaneous measurements of Cu K-shell x-ray emission and beam fusion neutrons were demonstrated using a petawatt laser at Osaka University

    Development of single-shot frequency-resolved optical gating for characterizing the instantaneous intensity and phase of LFEX laser pulses

    No full text
    Frequency-resolved optical gating (FROG) is a novel means of measuring the fast motion of a critical density surface during relativistic laser–plasma interaction. Herein, we present a design and demonstration results for a new single-shot FROG system and optical transport system for characterizing the instantaneous intensity and phase at the LFEX (Laser for Fast Ignition Experiment) laser facility at the Institute of Laser Engineering of Osaka University. At LFEX, the laser intensity at the vacuum window is intrinsically high because of two unique properties, namely, the large F-number of the off-axis parabolic mirror and the small radius of the interaction chamber. Consequently, to obtain an accurate FROG trace, attention must be paid to spectrum modulation due to self-phase modulation. The appropriate laser intensity for FROG operation was investigated experimentally, and an optical transport system with an energy attenuator composed of reflective optics was designed to eliminate the concern of spectrum modulation from measurements. A FROG trace recorded at LFEX shot with 161 J energy was reconstructed 100 times using an iterative phase-retrieval algorithm. Despite some differences in structure, the reconstructed spectrum agrees reasonably well with the spectrum obtained by a time-integrated spectrometer. This shows that the developed FROG system and the optical transport system can measure the instantaneous intensity and phase of a laser pulse without spectrum modulation

    Plasma density limits for hole boring by intense laser pulses

    Get PDF
    High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length
    corecore