7 research outputs found

    Spatio-Temporal Hybrid Fusion of CAE and SWIn Transformers for Lung Cancer Malignancy Prediction

    Full text link
    The paper proposes a novel hybrid discovery Radiomics framework that simultaneously integrates temporal and spatial features extracted from non-thin chest Computed Tomography (CT) slices to predict Lung Adenocarcinoma (LUAC) malignancy with minimum expert involvement. Lung cancer is the leading cause of mortality from cancer worldwide and has various histologic types, among which LUAC has recently been the most prevalent. LUACs are classified as pre-invasive, minimally invasive, and invasive adenocarcinomas. Timely and accurate knowledge of the lung nodules malignancy leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries. Currently, chest CT scan is the primary imaging modality to assess and predict the invasiveness of LUACs. However, the radiologists' analysis based on CT images is subjective and suffers from a low accuracy compared to the ground truth pathological reviews provided after surgical resections. The proposed hybrid framework, referred to as the CAET-SWin, consists of two parallel paths: (i) The Convolutional Auto-Encoder (CAE) Transformer path that extracts and captures informative features related to inter-slice relations via a modified Transformer architecture, and; (ii) The Shifted Window (SWin) Transformer path, which is a hierarchical vision transformer that extracts nodules' related spatial features from a volumetric CT scan. Extracted temporal (from the CAET-path) and spatial (from the Swin path) are then fused through a fusion path to classify LUACs. Experimental results on our in-house dataset of 114 pathologically proven Sub-Solid Nodules (SSNs) demonstrate that the CAET-SWin significantly improves reliability of the invasiveness prediction task while achieving an accuracy of 82.65%, sensitivity of 83.66%, and specificity of 81.66% using 10-fold cross-validation.Comment: arXiv admin note: substantial text overlap with arXiv:2110.0872

    A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining

    No full text
    The World Health Organization (WHO) suggests that mental disorders, neurological disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar disorder, Alzheimer’s disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD) methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75% were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks, the classifiers, and the performance indices were analyzed. We further discussed how various performance indices are essential based on the biostatistical and data mining perspective. Moreover, critical information related to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing the dataset and not using external validation could hinder the generalization of the CAD methods. We provided the list of the critical issues to consider in such studies

    A comprehensive review of the movement imaginary brain-computer interface methods: Challenges and future directions

    No full text
    Brain-computer interface (BCI) aims to translate human intention into a control output signal. In motor-imaginary (MI) BCI, the imagination of movement modifies the cortex brain activity. Such activities are then used in pattern recognition to identify certain movement classes. MI-BCI could be used to enhance the life quality of physically impaired subjects. Several challenges exist in MI-BCI, including selecting appropriate channels, usually linked with a suitable classifier choice. The entire procedure must be real time in practical applications. A variety of channel selection and classification methods were used for MI-BCI in the literature. Also, hybrid machine learning (ML) and deep learning (DL) methods were used in the literature. In this chapter, different channel selection, ML and DL methods, validation frameworks, and performance indices of EEG-based methods were investigated. Three hundred and twenty-two papers published between January 2000 and March 2021 were analyzed in this systematic review. Specific challenges and future directions were then provided.Peer ReviewedPostprint (author's final draft

    Reliable diagnosis and prognosis of COVID-19

    No full text
    The 2019 novel coronavirus disease (COVID-19) epidemic was officially announced by the World Health Organization (WHO) as an international public health emergency. The medical research world is responding to the COVID-19 pandemic at breathtaking speed. Most of the studies related to this outbreak identify the epidemiology and clinical characteristics of infected patients and focus on its short-term effects. However, there are many studies with inappropriate study design, data mining, and statistical analysis. Proper design and reliability assessment of COVID-19 diagnosis systems (e.g., proper feature selection, classification, and performance assessment) must be performed. Also, advanced statistical methods (e.g., multistate and competing risk models) are required to avoid the risk of bias in prognosis systems. Moreover, many studies may be too small and poorly designed to be helpful, merely adding to the COVID-19 noise. Additionally, trials without a control group, non-randomized and imbalanced trials are common problems of experimental designs. Thus, in this chapter, we aim to address the critical methods to use in the diagnosis and prognosis of COVID-19.The research leading to this results has also received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement Nº 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia.Peer ReviewedPostprint (published version
    corecore