25 research outputs found

    High-frequency two-input CMOS OTA for continuous-time filter applications

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A high-frequency fully differential CMOS operational transconductance amplifier (OTA) is presented for continuous-time filter applications in the megahertz range. The proposed design technique combines a linear cross-coupled quad input stage with an enhanced folded-cascode circuit to increase the output resistance of the amplifier. SPICE simulations show that DC-gain enhancement can be obtained without significant bandwidth limitation. The two-input OTA developed is used in high-frequency tuneable filter design based on IFLF and LC ladder simulation structures. Simulated results of parameters and characteristics of the OTA and filters in a standard 1.2 ÎŒm CMOS process (MOSIS) are presented. A tuning circuit is also discussed.Peer reviewe

    Easily compensated CMOS voltage buffer

    No full text

    Convolutional neural networks for image processing: an application in robot vision

    No full text
    adaptive image processing, and form a link between general feedforward neural networks and adaptive filters. Two dimensional CNNs are formed by one or more layers of two dimensional filters, with possible non-linear activation functions and/or down-sampling. Conventional neural network error minimization methods may be used to optimize convolutional networks in order to implement quite powerful image transformations. CNNs possess key properties of translation invariance and spatially local connections (receptive fields). CNNs are an interesting alternative when the the input is spatially or temporally distributed, and the desired output of a system may be specified. The present paper presents a description of the convolutional network architecture, and an application to a practical image processing application on a mobile robot. As a formal CNN framework has not yet been specified in the literature, we describe CNNs in some detail, conceptually and formally. A CNN is used to detect and characterize cracks on an autonomous sewer inspection robot. Although cracks are relatively easy to detect by a human operator, autonomous sewer inspection necessitate
    corecore