133 research outputs found

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω≠1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease

    Get PDF
    Evidence suggests exposure to particulate matter with aerodynamic diameter <2.5 ÎŒm (PM2.5) may increase the risk for Alzheimer's disease and related dementias. Whether PM2.5 alters brain structure and accelerates the preclinical neuropsychological processes remains unknown. Early decline of episodic memory is detectable in preclinical Alzheimer's disease. Therefore, we conducted a longitudinal study to examine whether PM2.5 affects the episodic memory decline, and also explored the potential mediating role of increased neuroanatomic risk of Alzheimer's disease associated with exposure. Participants included older females (n = 998; aged 73-87) enrolled in both the Women's Health Initiative Study of Cognitive Aging and the Women's Health Initiative Memory Study of Magnetic Resonance Imaging, with annual (1999-2010) episodic memory assessment by the California Verbal Learning Test, including measures of immediate free recall/new learning (List A Trials 1-3; List B) and delayed free recall (shortand long-delay), and up to two brain scans (MRI-1: 2005-06; MRI-2: 2009-10). Subjects were assigned Alzheimer's disease pattern similarity scores (a brain-MRI measured neuroanatomical risk for Alzheimer's disease), developed by supervised machine learning and validated with data from the Alzheimer's Disease Neuroimaging Initiative. Based on residential histories and environmental data on air monitoring and simulated atmospheric chemistry, we used a spatiotemporal model to estimate 3-year average PM2.5 exposure preceding MRI-1. In multilevel structural equation models, PM2.5 was associated with greater declines in immediate recall and new learning, but no association was found with decline in delayed-recall or composite scores. For each interquartile increment (2.81 ÎŒg/m3) of PM2.5, the annual decline rate was significantly accelerated by 19.3% [95% confidence interval (CI) = 1.9% to 36.2%] for Trials 1-3 and 14.8% (4.4% to 24.9%) for List B performance, adjusting for multiple potential confounders. Long-term PM2.5 exposure was associated with increased Alzheimer's disease pattern similarity scores, which accounted for 22.6% (95% CI: 1% to 68.9%) and 10.7% (95% CI: 1.0% to 30.3%) of the total adverse PM2.5 effects on Trials 1-3 and List B, respectively. The observed associations remained after excluding incident cases of dementia and stroke during the follow-up, or further adjusting for small-vessel ischaemic disease volumes. Our findings illustrate the continuum of PM2.5 neurotoxicity that contributes to early decline of immediate free recall/new learning at the preclinical stage, which is mediated by progressive atrophy of grey matter indicative of increased Alzheimer's disease risk, independent of cerebrovascular damage
    • 

    corecore