90 research outputs found
Ageing: collagenase‐mediated collagen fragmentation as a rejuvenation target
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108666/1/bjd13267.pd
The Okavango; a river supporting its people, environment and economic development
The Okavango basin comprises the Cuito and Cubango active catchment areas in Angola, in addition to the Kavango–Okavango non-active catchment in northern Namibia and Botswana. The Okavango River water and its ecosystem resources are critically important sources of livelihoods for people in the basin. Pressures from livelihoods and development are already impacting on the environment. These pressures may increase in the future due to the rapid increase in population, the peace process and associated resettlement activities in Angola, and major development initiatives in Botswana and Namibia. For instance, possible future increase in water abstraction from the Okavango River may affect the long-term environmental sustainability of the Okavango Delta by minimizing channel shifting and thereby reducing spatial biodiversity. The paper argues that while conservation of the natural environment is critical, the pressing development needs must be recognized. The reduction of poverty within the basin should be addressed in order to alleviate adverse effects on the environment. The paper recommends that the development of sustainable tourism and community-based natural resource management initiatives may be appropriate strategies for reaching the Millennium Development Goals of poverty alleviation and achievement of environmental sustainability in the Okavango Basin. These initiatives have a comparative advantage in this area as demonstrated by the performance of the existing projects
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio
The road to deterministic matrices with the restricted isometry property
The restricted isometry property (RIP) is a well-known matrix condition that
provides state-of-the-art reconstruction guarantees for compressed sensing.
While random matrices are known to satisfy this property with high probability,
deterministic constructions have found less success. In this paper, we consider
various techniques for demonstrating RIP deterministically, some popular and
some novel, and we evaluate their performance. In evaluating some techniques,
we apply random matrix theory and inadvertently find a simple alternative proof
that certain random matrices are RIP. Later, we propose a particular class of
matrices as candidates for being RIP, namely, equiangular tight frames (ETFs).
Using the known correspondence between real ETFs and strongly regular graphs,
we investigate certain combinatorial implications of a real ETF being RIP.
Specifically, we give probabilistic intuition for a new bound on the clique
number of Paley graphs of prime order, and we conjecture that the corresponding
ETFs are RIP in a manner similar to random matrices.Comment: 24 page
Spin alignment of leading mesons in hadronic decays
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay
- …