19 research outputs found

    Structural Dynamics and Encapsulation Properties of Polyelectrolyte Complex Micelles

    Get PDF
    Charged therapeutics such as nucleic acids and proteins can treat a vast range of human diseases that are traditionally undruggable. Their broadness in treating disease is due to their ability to influence cellular function. However, their high charge density and physiological barriers such as enzymatic degradation, hinder the deliverability of these molecules to the sites of disease. Polyelectrolyte complex (PEC) micelles are core-corona nanostructures that can encapsulate charged molecules and offer a platform for delivery. PECs form the core, when two oppositely charged polyelectrolytes are mixed in an aqueous solution, and the micelle corona is a neutral hydrophilic polymer that is conjugated to either one or both polyelectrolytes. The core promotes the encapsulation of charged therapeutics, while the corona offers protection, biocompatibility, and can be decorated with targeting ligands for improved bioavailability. PEC micelles can be highly tunable systems, allowing for features such as on-demand release capabilities to be engineered by altering the corona or core properties. In the first part of the dissertation, we use a thermoresponsive polymer to change the corona properties and study the structural changes at a physiologically hyperthermic temperature using dynamic light scattering (DLS) and small-angle x-ray scattering (SAXS). The structural changes were a function of the composition of the corona, with severe structural loss with a fully thermoresponsive corona and a preserved structure within larger aggregates for a partially thermoresponsive corona. Understanding the encapsulation capabilities and the effect of the PEC core properties on the micellar shape and size is of fundamental significance to the design of these micelles as drug delivery carriers. Using several physiochemical characterization techniques such as optical microscopy, fluorescence spectroscopy, DLS, SAXS, Förster resonance energy transfer (FRET) and transmission electron microscopy (TEM), we determined fundamental properties affecting the encapsulation capabilities and studied the structural changes and molecular dynamics of PEC micelles

    Anti-HMGCR myopathy: barriers to prompt recognition

    Get PDF
    Anti-HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) myopathy is an immune-mediated necrotising myopathy. Atypical presentations hinder its recognition and its prompt treatment. We present two patients with atypical clinical or pathological features. A 45-year-old woman had an asymptomatic serum creatine kinase (CK) of ~10 000 IU/L and muscle biopsy showing minimal changes. She then developed slowly progressive proximal weakness, diagnosed as limb-girdle muscular dystrophy but with negative genetics. Twelve years later, now with severe proximal weakness, her MR scan of muscle showed diffuse asymmetrical fatty degeneration, with conspicuous hyperintense STIR signal abnormalities. HMGCR antibodies were positive and she partially improved with immunosuppression. The second patient developed slowly progressive proximal limb weakness with a high serum CK (~4000 IU/L); muscle biopsy showed a lymphocyte infiltrate with angiocentric distribution suggesting vasculitis. Serum HMGCR antibodies were positive. Anti-HMGCR myopathy can present as a slowly progressive myopathy with atypical pathology. HMGCR antibody screening is indicated for people with suspected limb-girdle muscular dystrophy or atypical inflammatory muscle conditions

    Muscle magnetic resonance imaging involvement patterns in nemaline myopathies

    Get PDF
    OBJECTIVE: Characterise the diagnostic and prognostic value of muscle MRI patterns as biomarkers in a genetically heterogeneous nemaline myopathy (NM) patient cohort. METHODS: Modified Mercuri scoring of lower limb MRI in genetically characterised NM patients referred to the highly specialised service for congenital myopathies at Great Ormond Street Hospital. Findings were compared to clinical data and MRI patterns derived from collated published data. RESULTS: Twenty-seven patients with MRI were identified (8 NEB-NM, 13 ACTA1-NM, 6 TPM3-NM). NEB-NM demonstrated sparing of the thigh. ACTA1-NM demonstrated diffuse thigh involvement, notable in the vasti, sartorius and biceps-femoris, with relative adductor and gracilis sparing. TPM3-NM demonstrated diffuse thigh involvement notable in biceps-femoris and adductor magnus with relative rectus femoris, adductor longus and gracilis sparing. In the lower leg, the soleus and tibialis anterior are notably involved in all three genotypes. NEB-NM and ACTA1-NM demonstrated relative gastrocnemii and tibialis posterior sparing, while TPM3-NM showed significantly more tibialis posterior involvement (P =< 0.05). Comparison of involvement patterns with literature datasets highlighted preferential adductor and gracilis sparing in our ACTA1-NM cohort, consistent tibialis posterior involvement in our TPM3-NM cohort and a distinct MRI pattern from those derived from other NM genotypes and congenital myopathies. Greater tibialis anterior involvement correlated with foot drop (P = 0.02). Greater tibialis anterior and extensor hallucis longus involvement correlated with worse mobility (P =< 0.04). INTERPRETATION: This is the widest NM MRI data set described to date; we describe distinct muscle involvement patterns for NEB-NM, ACTA1-NM and TPM3-NM which may have utility as diagnostic and prognostic biomarkers and aid in genetic variant interpretation

    Muscle MRI in periodic paralysis shows myopathy is common and correlates with intramuscular fat accumulation

    Get PDF
    INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials

    Teaching NeuroImages: Hypertrophic polyneuropathy

    No full text
    corecore