54 research outputs found

    Most of the VP1 Unique Region of B19 Parvovirus Is on the Capsid Surface

    Get PDF
    AbstractB19 parvovirus is pathogenic in man and a vaccine is desirable. In convalescence after acute infection, the dominant humoral immune response is directed to the minor capsid protein called VP1, which differs from the major capsid protein by an additional NH2-terminal 227 amino acids. We have previously shown that this unique region contains multiple linear neutralizing epitopes. We produced seven recombinant B19 capsids that contained progressively truncated VP1 unique region sequences, each fused to a Flag peptide (AspTyrLysAspAspAspAspLys) at the NH2-terminus. Capsids containing normal VP2 and truncated Flag-VP1 proteins and, in some cases, only truncated Flag-VP1 chimeric proteins, were analyzed by ELISA, affinity chromatography, and electron microscopy using anti-Flag monoclonal antibody. All regions examined showed binding to anti-Flag antibody in multiple assays, indicating that most of the VP1 unique region is external to the capsid and accessible to antibody binding. These results have implications for the design of a B19 parvovirus vaccine and the use of empty capsids for presentation of heterologous protein antigens

    Human telomere disease due to disruption of the CCAAT box of the TERC promoter

    Get PDF
    Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly conserved CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063

    Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes

    Get PDF
    Exosomal microRNAs modulate cancer cell metabolism and the immune response. Specific exosomal microRNAs have been reported to be reliable biomarkers of several solid and hematologic malignancies. We examined the possible diagnostic and prognostic values of exosomal microRNAs in two human bone marrow failure diseases: aplastic anemia and myelodysplastic syndromes. After screening 372 microRNAs in a discovery set (n=42) of plasma exosome samples, we constructed a customized PCR plate, including 42 microRNAs, for validation in a larger cohort (n=99). We identified 25 differentially expressed exosomal microRNAs uniquely or frequently present in aplastic anemia and/or myelodysplastic syndromes. These microRNAs could be related to intracellular functions, such as metabolism, cell survival, and proliferation. Clinical parameters and progression-free survival were correlated to microRNA expression levels in aplastic anemia and myelodysplastic syndrome patients before and after six months of immunosuppressive therapy. One microRNA, mir-126-5p, was negatively correlated with a response to therapy in aplastic anemia: patients with higher relative expression of miR-126-5p at diagnosis had the shortest progression-free survival compared to those with lower or normal levels. Our findings suggest utility of exosomal microRNAs in the differential diagnosis of bone marrow failure syndromes. (Registered at clinicaltrials.gov identifiers: 00260689, 00604201, 00378534, 01623167, 00001620, 00001397, 00217594)

    Eltrombopag monotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome

    Get PDF
    Myelodysplastic syndromes (MDS) are a group of clonal myeloid disorders characterized by cytopenia and a propensity to develop acute myeloid leukemia (AML). The management of lower-risk (LR) MDS with persistent cytopenias remains suboptimal. Eltrombopag (EPAG), a thrombopoietin receptor agonist, can improve platelet counts in LR-MDS and tri-lineage hematopoiesis in aplastic anemia (AA). We conducted a phase 2 dose modification study to investigate the safety and efficacy of EPAG in LR-MDS. EPAG dose was escalated from 50 mg/day, to a maximum of 150 mg/day over a period of 16 weeks. The primary efficacy endpoint was hematologic response at 16-20 weeks. Eleven of 25 (44%) patients responded; five and six patients had uni- or bi-lineage hematologic responses, respectively. The predictors of response were presence of a PNH clone, marrow hypocellularity, thrombocytopenia with or without other cytopenia, and elevated plasma thrombopoietin levels at study entry. The safety profile was consistent with previous EPAG studies in AA; no patients discontinued drug due to adverse events. Three patients developed reversible grade-3 liver toxicity and one patient had increased reticulin fibrosis. Ten patients discontinued EPAG after achieving a robust response (median time 16 months); four of them reinitiated EPAG due to declining counts, and all attained a second robust response. Six patients had disease progression not associated with expansion of mutated clones and no patient progressed to AML on study. In conclusion, EPAG was well-tolerated and effective in restoring hematopoiesis in patients with low to intermediate-1 risk MDS. This study was registered at clinicaltrials.gov as #NCT00932156

    CellCallEXT: Analysis of Ligand–Receptor and Transcription Factor Activities in Cell–Cell Communication of Tumor Immune Microenvironment

    No full text
    (1) Background: Single-cell RNA sequencing (scRNA-seq) data are useful for decoding cell–cell communication. CellCall is a tool that is used to infer inter- and intracellular communication pathways by integrating paired ligand–receptor (L–R) and transcription factor (TF) activities from steady-state data and thus cannot directly handle two-condition comparisons. For tumor and healthy status, it can only individually analyze cells from tumor or healthy tissue and examine L–R pairs only identified in either tumor or healthy controls, but not both together. Furthermore, CellCall is highly affected by gene expression specificity in tissues. (2) Methods: CellCallEXT is an extension of CellCall that deconvolutes intercellular communication and related internal regulatory signals based on scRNA-seq. Information on Reactome was retrieved and integrated with prior knowledge of L–R–TF signaling and gene regulation datasets of CellCall. (3) Results: CellCallEXT was successfully applied to examine tumors and immune cell microenvironments and to identify the altered L–R pairs and downstream gene regulatory networks among immune cells. Application of CellCallEXT to scRNA-seq data from patients with deficiency of adenosine deaminase 2 demonstrated its ability to impute dysfunctional intercellular communication and related transcriptional factor activities. (4) Conclusions: CellCallEXT provides a practical tool to examine intercellular communication in disease based on scRNA-seq data

    Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions.

    No full text
    Presentation of linear epitopes of the B19 parvovirus capsid proteins as peptides might be a useful vaccine strategy. We produced overlapping fusion proteins to span the viral capsid sequence, inoculated rabbits, and determined whether the resulting antisera contained antibodies that neutralized the ability of the virus to infect human erythroid progenitor cells. Antibodies that bound to virus in an enzyme-linked immunosorbent assay were present in antisera raised against 10 of 11 peptides; strongest activity was found for antisera against the carboxyl-terminal half of the major capsid protein. However, strong neutralizing activity was elicited in animals immunized with peptides from the amino-terminal portion of the unique region of the minor capsid protein and peptides containing the sequence of the junction region between the minor and major capsid proteins. The development of neutralizing activity in animals was elicited most rapidly with the fusion peptide from the first quarter of the unique region. A 20-amino-acid region of the unique region of the minor capsid protein was shown to contain a neutralizing epitope. Multiple antigenic peptides, based on the sequence of the unique region and produced by covalent linkage through a polylysine backbone, elicited strong neutralizing antibody responses. Synthetic peptides and fusion proteins containing small regions of the unique portion of the minor capsid protein might be useful as immunogens in a human vaccine against B19 parvovirus

    Time-Varying Gene Expression Network Analysis Reveals Conserved Transition States in Hematopoietic Differentiation between Human and Mouse

    No full text
    (1) Background: analyses of gene networks can elucidate hematopoietic differentiation from single-cell gene expression data, but most algorithms generate only a single, static network. Because gene interactions change over time, it is biologically meaningful to examine time-varying structures and to capture dynamic, even transient states, and cell-cell relationships. (2) Methods: a transcriptomic atlas of hematopoietic stem and progenitor cells was used for network analysis. After pseudo-time ordering with Monocle 2, LOGGLE was used to infer time-varying networks and to explore changes of differentiation gene networks over time. A range of network analysis tools were used to examine properties and genes in the inferred networks. (3) Results: shared characteristics of attributes during the evolution of differentiation gene networks showed a “U” shape of network density over time for all three branches for human and mouse. Differentiation appeared as a continuous process, originating from stem cells, through a brief transition state marked by fewer gene interactions, before stabilizing in a progenitor state. Human and mouse shared hub genes in evolutionary networks. (4) Conclusions: the conservation of network dynamics in the hematopoietic systems of mouse and human was reflected by shared hub genes and network topological changes during differentiation

    Comparative Transcriptomic Analysis of the Hematopoietic System between Human and Mouse by Single Cell RNA Sequencing

    No full text
    (1) Background: mouse models are fundamental to the study of hematopoiesis, but comparisons between mouse and human in single cells have been limited in depth. (2) Methods: we constructed a single-cell resolution transcriptomic atlas of hematopoietic stem and progenitor cells (HSPCs) of human and mouse, from a total of 32,805 single cells. We used Monocle to examine the trajectories of hematopoietic differentiation, and SCENIC to analyze gene networks underlying hematopoiesis. (3) Results: After alignment with Seurat 2, the cells of mouse and human could be separated by same cell type categories. Cells were grouped into 17 subpopulations; cluster-specific genes were species-conserved and shared functional themes. The clustering dendrogram indicated that cell types were highly conserved between human and mouse. A visualization of the Monocle results provided an intuitive representation of HSPC differentiation to three dominant branches (Erythroid/megakaryocytic, Myeloid, and Lymphoid), derived directly from the hematopoietic stem cell and the long-term hematopoietic stem cells in both human and mouse. Gene regulation was similarly conserved, reflected by comparable transcriptional factors and regulatory sequence motifs in subpopulations of cells. (4) Conclusions: our analysis has confirmed evolutionary conservation in the hematopoietic systems of mouse and human, extending to cell types, gene expression and regulatory elements
    corecore